Appendix B

E. coli Bacteria Allocations and Daily Loads for the Chesapeake and Ohio Canal

February 2013
Contents
Introduction ... 1
Applicable Water Quality Standards .. 1
Translation of Fecal Coliform Values to E. Coli .. 2
Compliance with Revised WQS ... 2
Existing Loads, Allocations, and Percent Reductions ... 3
Daily Loads ... 4
 E. coli Daily Loads .. 5
Assurance of Implementation—Daily Loads .. 5
References ... 7
Introduction
The purpose of this document is to revise the original 2004 Final Total Maximum Daily Load for Bacteria in Chesapeake and Ohio Canal (DDOH 2004). The revision incorporates a new water quality standard (WQS) for Escherichia coli (E. coli) that the District of Columbia (District) promulgated in October 2005 after the approval of the original total maximum daily loads (TMDLs). The allocations specified in the original TMDL are still in effect; this revision provides a translation of those loads to E. coli, the parameter on which the existing standard is based. The translation was performed using a translator equation developed from analysis of paired fecal coliform/E. coli sampling data collected from waters in the District.

In addition, daily loading expressions for the new E. coli allocations are provided. This was done to comply with the U.S. Environmental Protection Agency (EPA) obligations under the 2006 court case, Friends of the Earth vs. the Environmental Protection Agency, 446 F.3d 140, 144 (D.C. Cir. 2006) which requires establishment of a daily loading expression in TMDLs in addition to any annual or seasonal loading expressions previously established in the TMDL.

Anacostia Riverkeepers, Friends of the Earth, and Potomac Riverkeepers filed a complaint (Case No.: 1:09-cv-00098-JDB) on January 15, 2009, because certain District TMDLs did not have a daily load expression established. EPA settled the complaint by agreeing to an established schedule that both the court and the plaintiffs to the case approved. The settlement agreement requires establishment of daily loads in the District bacteria TMDLs referenced in Paragraphs 24a, 24c, 24g, 24i, 24j, and 24l of the plaintiffs’ complaint by December 2014. This TMDL revision satisfies that requirement for the 2004 Final Total Maximum Daily Load for Bacteria in Chesapeake and Ohio Canal (Paragraph 24j of the complaint).

Applicable Water Quality Standards
The Chesapeake and Ohio (C&O) Canal was on the District’s 1998 303(d) list because fecal coliform bacteria counts exceeded the District’s WQS. The District WQS, Title 21 of the District of Columbia Municipal Regulations (DCMR) Chapter 11, 49 D.C. Reg. 3012 and D.C. Reg. 4854, specifies the categories of beneficial uses as

1. Class A. primary contact recreation
2. Class B. secondary contact recreation
3. Class C. protection and propagation of fish, shellfish, and wildlife
4. Class D. protection of human health related to consumption of fish and shellfish
5. Class E. navigation

WQS are derived from EPA recommendations on the basis of risk levels associated with swimming. Under the WQS that were in place at the time of the original TMDL, Class A and Class B waters were required to achieve or exceed the WQS for bacteria as measured by fecal coliform as the indicator organism. Fecal coliforms are microbes that live in the intestinal tracts of warm-blooded animals, whose presence indicates the potential for pathogens in the water.

When the original 2004 fecal coliform bacteria TMDL was developed for the C&O Canal, the standard for Class A waters was a maximum 30-day geometric mean of 200 MPN, where MPN is a statistically derived estimate of the Most Probable Number of bacteria colonies in a 100 milliliter sample. This statistical estimate is often called a count, although it is represented as a count.
concentration. The geometric mean is based on a minimum of five samples within the 30-day period. The standard for Class B waters was a 30-day geometric mean of 1,000 MPN. Because the C&O Canal is designated as a Class A water, the more restrictive limit of 200 MPN was used as the not-to-exceed criterion in the original 2004 TMDL.

Effective January 1, 2008, the District bacteriological WQS changed from fecal coliform to \textit{E. coli}. The current Class A water standards are a geometric mean of 126 MPN and 410 MPN for a single-sample value. The geometric mean is based on a minimum of five samples within the 30-day period and is used in both water quality trend assessments and permits. The single-sample value is valid for use only in assessing water quality trends. Class B and Class C waters do not have an \textit{E. coli} standard. The C&O Canal is used for Class B, C, D, and E purposes but is designated as a Class A, B, C, D, and E waterbody (DCMR, WQS, 21-1101.2). Therefore, the Class A \textit{E. coli} standard must be met.

Translation of Fecal Coliform Values to \textit{E. Coli}

A *translator* is a mathematical equation that allows one parameter to be translated into another consistently and in a scientifically defensible manner. To support the TMDL revision, EPA and the District of Columbia Department of the Environment developed a District-specific translator using the statistical relationship between paired fecal coliform and \textit{E. coli} data collected in the District’s waters (LimnoTech 2011 and 2012).\(^1\) The data used to develop the DC translator was composed of paired fecal coliform and \textit{E. coli} instream monitoring measurements for DC and adjacent waters collected by three agencies: DDOE, the Virginia Department of Environmental Quality (VDEQ), and the Maryland Department of the Environment (MDE). The dataset includes contains ambient instream water quality monitoring data as well as end-of-pipe data collected by DC Water at separate storm water system (SSWS) outfalls. CSO data was excluded from the dataset and was not used in the development of the translator. \textit{E. coli} levels for CSO’s were not calculated using the translator. (See Section CSO section below) The translator is representative of ambient and stormwater bacteria concentrations and was used to convert the original fecal coliform TMDL allocations into \textit{E. coli} values. The District-specific translator equation is shown in Equation 1 below.

\[
\log_2(E. \text{coli}) = 0.9377[\log_2(\text{fecal coliform})] - 0.4614
\]

Use of the translator allowed for converting original fecal coliform annual load allocations to the current WQS for \textit{E. coli}, while still relying on the original modeling and analysis.

Compliance with Revised WQS

Using the District-specific translator, a fecal coliform value of 200 MPN (the original District standard for bacteria) is associated with an \textit{E. coli} value of approximately 104 MPN, which is below the 126 MPN \textit{E. coli} criteria.

It is important to consider that under the original modeling analysis, reductions to sources of fecal bacteria were made until the waterbodies met the fecal coliform geometric mean standard

\(^1\) Documentation related to development of the translator is in LimnoTech’s 2011 Memorandum, *Final Memo Summarizing DC Bacteria Data and Recommending a DC Bacteria Translator (Task 2)* and Limno Tech’s 2012 Memorandum, *Update on Development of DC Bacteria Translators.*
of 200 MPN at all times. Therefore, under the original modeling analysis, fecal coliform loads translated to \textit{E. coli} loads will result in loads that are more protective than WQS. The \textit{E. coli} reductions in this TMDL meet approximately a geometric mean of 104 MPN, while the current bacteria standard is 126 MPN.

Existing Loads, Allocations, and Percent Reductions

This TMDL revision translates the annual fecal coliform loads presented in the original 2004 report into equivalent annual \textit{E. coli} loads\(^2\). The October 2004 TMDL provides loads for the MPN of colonies of fecal coliform calculated for various sources including upstream (representing the in-stream and watershed loads delivered at the District’s boundaries), nonpoint, and sewershed sources. The percentage of the total existing load and TMDL was found for each source on the basis of the original fecal coliform standards. Then, the total existing load and TMDL were converted to \textit{E. coli} loads using Equation 1. Finally, the source percentages were applied to the \textit{E. coli} total existing load and TMDL in the same proportion as the original TMDL to derive the \textit{E. coli} allocations. The results are displayed in Tables 1 and 2; calculations are provided as a spreadsheet in Appendix C.

<table>
<thead>
<tr>
<th>\textit{E. coli} source</th>
<th>Existing load (MPN/year)</th>
<th>% of total existing load</th>
<th>TMDL allocation (MPN/year)</th>
<th>% of total TMDL</th>
<th>% reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Upstream Boundary Load</td>
<td>1.93E+10</td>
<td>1%</td>
<td>1.14E+10</td>
<td>4%</td>
<td>41%</td>
</tr>
<tr>
<td>Total Nonpoint Source Load</td>
<td>1.27E+12</td>
<td>44%</td>
<td>1.43E+11</td>
<td>57%</td>
<td>89%</td>
</tr>
<tr>
<td>Total Load from Sewershed</td>
<td>1.62E+12</td>
<td>56%</td>
<td>9.59E+10</td>
<td>38%</td>
<td>94%</td>
</tr>
<tr>
<td>Margin of Safety</td>
<td>–</td>
<td>–</td>
<td>2.50E+09</td>
<td>1%</td>
<td>–</td>
</tr>
<tr>
<td>Total Load</td>
<td>2.91E+12</td>
<td>100%</td>
<td>2.53E+11</td>
<td>100%</td>
<td>91%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TMDL</th>
<th>Upstream allocation</th>
<th>Load allocation</th>
<th>Wasteload allocation</th>
<th>MOS (1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.53E+11</td>
<td>1.14E+10</td>
<td>1.43E+11</td>
<td>9.59E+10</td>
<td>2.50E+09</td>
</tr>
</tbody>
</table>

The original October 2004 TMDL used a series of computer simulations to determine the level of annual load reductions needed to meet WQS. The WQS were considered to be met if no model segment in the District had a fecal coliform maximum 30-day geometric mean exceeding the 200 MPN Class A standards. Exceedance is expressed in the number of months exceeding the geometric mean. However, this revised TMDL considers standards to be met when all portions of the waterbody do not exceed the \textit{E. coli} maximum 30-day geometric mean of 126 MPN Class A standard. Because the bacteria translator provides a calculation of the equivalent loads.

\(^2\) Original modeling files with associated source time series of flows and concentrations were not available therefore it was not possible to apply the translator to concentrations.
E. coli load, under a given scenario that meets the fecal coliform standard, the equivalent E. coli standard will also be met with an additional margin of safety.

Daily Loads

In November 2006, EPA issued the memorandum *Establishing TMDL Daily Loads in Light of the Decision by the U.S. Court of Appeals for the D.C. Circuit in Friends of the Earth, Inc. v. EPA et al., No. 05-5015 (April 25, 2006) and Implications for NPDES permits*, which recommends that all TMDLs and associated load allocations and wasteload allocations include a daily time increment in conjunction with other appropriate temporal expressions that might be necessary to implement the relevant WQS. In compliance with that recommendation, this section presents corresponding daily load expressions for the long-term load allocations for the C&O Canal sources described in Table 1 and Table 2 above. These daily loads were developed in a manner consistent with the following assumptions in EPA’s *Draft Options for Expressions of Daily Loads in TMDLs* (USEPA 2007):

1. Methods and information used to develop the daily load should be consistent with the approach used to develop the loading analysis.
2. The analysis should avoid added analytical burden without providing added benefit.
3. The daily load expression should incorporate terms that address acceptable variability in loading under the long-term loading allocation. Because many TMDLs are developed for precipitation-driven parameters, one number will often not represent an adequate daily load value. Rather, a range of values might need to be presented to account for allowable differences in loading due to seasonal or flow-related conditions (e.g., daily maximum and daily median).
4. The methodologies are applicable to a wide variety of TMDL situations; however, the specific application (e.g., data used, values selected) should be based on knowledge and consideration of site-specific characteristics and priorities.
5. The TMDL analysis on which the daily load expression is based fully meets the EPA requirements for approval, is appropriate for the specific pollutant and waterbody type, and results in attainment of water quality criteria in a manner that is consistent with the underlying analysis that was used to develop the original TMDLs.

Input files to the original model were not available for the C&O Canal, therefore an alternative approach was used to determine maximum daily loads. EPA’s draft guidance document, *Options for Expressing Daily Loads in TMDLs* (USEPA 2007), recommends a statistical approach as another appropriate way to develop daily maximum load values, specifically when long periods of continuous simulation data are not available. EPA’s *Technical Support Document for Water Quality-based Toxics Control* (TSD)(USEPA 1991) describes a statistical approach to identifying a maximum daily load in such circumstances. The statistical daily load expression incorporates acceptable variability in loading under the long-term loading allocation.

Equation 2 (USEPA 1991) below relates the maximum daily load (MDL) to the long-term average (LTA) as:

\[
MDL = LTA \cdot \exp \left(Z_p \sigma_y - 0.5 \sigma_y^2 \right)
\]

[2]

where

- \(Z_p\) = \(p\)th percentage point of the standard normal distribution, as above
- \(CV\) = coefficient of variation of the untransformed data
Table 5-2 of the TSD provides pre-calculated multipliers for the LTA depending on coefficient of variation and the Z-statistic used. The 99th percentile was used, and the default coefficient of variation of 0.6 was assumed on the basis of recommendations in the TSD.

For the C&O Canal loads, the LTA was calculated for each source by dividing the annual \(E. coli \) load allocation by 365. The MDL was the product of the LTA and the multiplier in Table 5-2 of the TSD based on using the 99th percentile z-statistic and a CV of 0.6. The specific steps are summarized below:

1. Divide the annual \(E. coli \) load allocation for each source in Table 1 by 365 (average daily load)
2. Multiply the average daily load by 3.11 (the 99th percentile Z-statistic from Table 5-2 in the TSD) to derive the corresponding maximum daily load

E. coli Daily Loads

Table 3 presents the \(E. coli \) daily loads for the C&O Canal by source.

<table>
<thead>
<tr>
<th>(E. coli) source</th>
<th>Daily load (MPN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total upstream boundary load</td>
<td>Max daily 9.68E+07</td>
</tr>
<tr>
<td></td>
<td>Avg daily 3.11E+07</td>
</tr>
<tr>
<td>Total nonpoint source load</td>
<td>Max daily 1.22E+09</td>
</tr>
<tr>
<td></td>
<td>Avg daily 3.91E+08</td>
</tr>
<tr>
<td>Total load from sewershed</td>
<td>Max daily 8.17E+08</td>
</tr>
<tr>
<td></td>
<td>Avg daily 2.63E+08</td>
</tr>
<tr>
<td>Total load</td>
<td>Max daily 2.15E+09</td>
</tr>
<tr>
<td></td>
<td>Avg daily 6.92E+08</td>
</tr>
</tbody>
</table>

Assurance of Implementation—Daily Loads

The approach used to calculate daily loads in this TMDL identifies a representative maximum daily or average daily load for the annual TMDL for each source identified in the original report. The approach does not presume that the maximum daily load provided could be discharged every day and still meet the in-stream WQS. While expressions of daily loading values are useful in illustrating the variability in loading that can occur under a TMDL scenario, the annual load must also be met to comply with the TMDL.

Note that federal regulations at Title 40 of the *Code of Federal Regulations* section 122.44(d)(1)(vii)(B) require that, for a National Pollutant Discharge Elimination System permit for an individual point source, the effluent limitations must be consistent with the assumptions and requirements of any available wasteload allocation for the discharge prepared by the
jurisdiction and approved by EPA. There is no express or implied statutory requirement that effluent limitations in National Pollutant Discharge Elimination System permits be expressed in daily terms. The Clean Water Act definition of effluent limitation is quite broad (effluent limitation is “any restriction on quantities, rates, and concentrations of chemical, physical, biological, and other constituents which are discharged from point sources …”), see Clean Water Act section 502(11). Unlike the Clean Water Act’s definition of TMDL, the Clean Water Act definition of effluent limitation does not contain a daily temporal restriction. National Pollutant Discharge Elimination System permit regulations do not require that effluent limits in permits be expressed as maximum daily limits or even as numeric limitations in all circumstances, and such discretion exists regardless of the time increment chosen to express the TMDL. For further guidance, see Benjamin H. Grumbles’ memo of November 15, 2006, titled Establishing TMDL Daily Loads in Light of the Decision by the U.S. Court of Appeals for the D.C. Circuit in Friends of the Earth, Inc. v. EPA, et al., No. 05-5015 (April 25, 2006) and implications for NPDES Permits.
References

