DOEE Stormwater BMP
Construction and Inspection Training

Greg Hoffmann, P.E.
Center for Watershed Protection
Stormwater Overview:

Dirty Water is Bad.
Figure 12.5. Virginia average annual water budget with urbanization. Source: Potomac Conservancy 2008.
Did you know?

• 43% of the District’s land area is impervious.

• A single 1.2 inch storm falling on this area produces about 525 million gallons of stormwater runoff.
Water in storm drains does not go to a treatment plant...
Stormwater Management Eras

1. Get rid of it!
2. Hold on to it – for a little while.
3. Hold on to it indefinitely, remove the pollutants, but don’t create flooding problems or let it be a nuisance.
Stormwater in the District

2013 Stormwater Guidebook:
Retain the first 1.2” of rainfall on site or through off-site mitigation.
Why Retention?

• Reduces runoff volume.
 • Reduces pollutant loads.
 • Mimics pre-development hydrology
 • Groundwater recharge
Why 1.2”?

90th Percentile Event = 1.2”

Precipitation Data, NOAA, Reagan National Airport, Arlington VA, 2006
Retention Options

Retention is not just infiltration!

✓ Green Roofs
✓ Rainwater Harvesting
✓ Impervious Disconnection
✓ Permeable Pavement
✓ Bioretention
✓ Tree Planting and Preservation
✓ Infiltration
Stormwater Regulations
Stormwater Retention Volume

\[SWRv = P \left(Rv_I \times \%I + Rv_C \times \%C + Rv_N \times \%N \right) \times SA \times 7.48 / 12 \]

- **SWRv** = Volume required to be retained on site (gal)
- **P** = Precipitation (in)
- **Rv_I** = 0.95 (runoff coefficient for impervious cover)
- **Rv_C** = 0.25 (runoff coefficient for compacted cover)
- **Rv_N** = 0.0 (runoff coefficient for natural cover)
- **\%I** = % of site in impervious cover
- **\%C** = % of site in compacted cover
- **\%N** = % of site in natural cover
- **SA** = Surface area (square feet)
Water Quality Treatment Volume

\[
WQTv = P \left(Rv_I \%I + Rv_C \%C + Rv_N \%N \right) \times SA \times 7.48 / 12 - SWRv
\]

- **WQTv** = Volume required to be retained or treated, above and beyond the SWRv (gal)
- **SWRv** = Volume required to be retained on site (gal)
- **P** = Precipitation (in)
- **Rv_I** = 0.95 (runoff coefficient for impervious cover)
- **Rv_C** = 0.25 (runoff coefficient for compacted cover)
- **Rv_N** = 0.0 (runoff coefficient for natural cover)
- **%I** = % of site in impervious cover
- **%C** = % of site in compacted cover
- **%N** = % of site in natural cover
- **SA** = Surface area (square feet)
Quantity Control Requirements:

• 2-year storm: control peak discharge to pre-development conditions.

• 15-year storm: control peak discharge to pre-project conditions.

For PROW: These volumes are incorporated into the MEP process.
Don’t Forget About ESC!

• Licensed/Certified Responsible Person must be on site at all times.

• New Manual Coming Soon!
Permeable Pavement

Permeable Pavers

Pervious Concrete

Porous Asphalt
Permeable Pavement Versions

- **Standard**
- **Enhanced with Underdrain**
- **Enhanced without Underdrain**
Permeable Pavement Feasibility Criteria

- Ratio of external contributing impervious surface to permeable pavement is 4:1
- CDA should be impervious
- 2’ depth to seasonally high water table
- 5% maximum surface slope
- 10’ setback from buildings, unless a impermeable liner is used on edge
- Compaction or vehicle traffic must be avoided if possible.
Permeable Pavement Design Criteria

• Structural Design
 – Total traffic
 – In-situ soil strength
 – Bedding and reservoir layer design

• Hydraulic Design
 – Design volume
Permeable Pavement Construction Notes
1. Protect Area from Heavy Equipment & Construction Traffic

- Keep Pavement Area Outside of Limits of Disturbance
2: Stabilize Drainage Area - Divert Water if Necessary – SEDIMENT IS THE ENEMY!

Installed too early during construction; fouled with construction sediment

Clean work area, with curb to divert drainage around work site

Photo Credit: Conservation Design Forum
3: Excavation and Stone Reservoir Installation

- Verify with plan: Right stone, right depth, right place

In most cases, bottom of excavation should be FLAT. On slopes, individual cells should be flat.
4: Reservoir & Bedding Layer

Details vary – check on approved plan

Concrete Pavers

Permeable Joint Material

Open-graded Bedding Course

Open-graded Base Reservoir

Open-graded Subbase Reservoir

Underdrain (as required)

Optional Geotextile Under Subbase

Uncompacted Subgrade Soil
5: Placement of Pavement Surface
Inspection: POST-CONSTRUCTION

Common issues:
• Erosion
• Material storage
• Sediment from upgradient areas
• Clogging of pavement surface
• Structural damage
Pavement Surface No-Nos

Structural Damage

Loose Gravel on Pavement Surface
Pavement Surface: Some Accumulation of Fines Expected, But...
DOE Inspection Form

<table>
<thead>
<tr>
<th>Inspection Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Preparation:</td>
</tr>
<tr>
<td>Have erosion and sediment controls been properly installed and maintained according to approved plans?</td>
</tr>
<tr>
<td>Is stormwater runoff being diverted around the practice?</td>
</tr>
<tr>
<td>Has the contributing drainage area been fully stabilized?</td>
</tr>
<tr>
<td>Subgrade Preparation:</td>
</tr>
<tr>
<td>Is subgrade suitable free of debris, standing water, proper grading?</td>
</tr>
<tr>
<td>If design is for infiltration, verify soils have not been compacted.</td>
</tr>
<tr>
<td>Excavated soil stockpile is located away from practice with erosion and sediment controls in place?</td>
</tr>
<tr>
<td>Filter Layer or Geotextile Fabric (where applicable):</td>
</tr>
<tr>
<td>The filter layer and/or geotextile fabric have been installed according to the specifications?</td>
</tr>
<tr>
<td>Underdrain and Reservoir Layer:</td>
</tr>
<tr>
<td>Does the underdrain meet specifications with correct perforation pattern, elevation, and slope?</td>
</tr>
<tr>
<td>Caps are placed on the upstream (but not the downstream) ends of the underdrains?</td>
</tr>
<tr>
<td>Does the stone reservoir meet specifications (clean, washed, free of fines) and is it installed to design depth?</td>
</tr>
<tr>
<td>Is at least 2 inches of aggregate provided above and below the underdrains?</td>
</tr>
</tbody>
</table>
DOEE Inspection Form

<table>
<thead>
<tr>
<th>Inspection Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Material:</td>
</tr>
<tr>
<td>Does the surface material meet the specification and has it been properly installed?</td>
</tr>
<tr>
<td>Is the surface even and can runoff spread evenly across it?</td>
</tr>
<tr>
<td>Has the surface material had adequate curing time (for porous asphalt and pervious concrete)</td>
</tr>
<tr>
<td>Is the surface free of fines and areas of clogging?</td>
</tr>
<tr>
<td>Over Flow Drain (where applicable):</td>
</tr>
<tr>
<td>Is overflow invert at correct elevation?</td>
</tr>
<tr>
<td>Final Inspection:</td>
</tr>
<tr>
<td>Can water infiltrate properly into the practice?</td>
</tr>
<tr>
<td>Does the reservoir storage layer drain within 48 hours?</td>
</tr>
</tbody>
</table>
Questions?
B-1 Traditional Bioretention
B-2 Streetscape Bioretention
B-3 Engineered Tree Pits
B-4 Foundation Planters
B-5 Residential Rain Gardens
Standard Bioretention Design

- Underdrain designs without enhanced features
- 18” media
- 60% retention value for the design storm captured
- Additional TSS removal
- Oversizing practice can result in meeting full criteria
Enhanced Bioretention 1

- Underdrain designs with infiltration sump and 24” media
- 100% retention value for the design storm captured
Enhanced Bioretention 2 (Infiltration)

- For infiltration designs (storage volume must infiltrate within **72 hours**)
- Retention value for the design storm captured
Bioretention Feasibility Criteria

• 2 to 4 feet of head required
• 2’ depth to seasonally high water table
• 10’ setback from buildings
Conveyance Criteria

• Conveyance: Off-line vs. On-line
 – On-line requires overflow device
Bioretention Design Criteria

• Surface Cover Options
 – Mulch and perennial vegetation
 – Turf
 – Stone with perennial vegetation
Bioretention Construction Notes

SECTION A-A
Make Sure Drainage Area is Stabilized. Block Inlets and/or Divert Water if Necessary
Check for Choker Stone Layer Between Underdrain & Soil; Filter Fabric on Sides Only (optional)
Verify Appropriate Soil Media and Depth

Verify depth as per plans!
Make Sure Water Gets in Inlets!
Check for Level Filter Bed

Unlevel filter bed concentrates water in only one area; uneven filtering

Level filter bed - even distribution of flow across surface
Slope for Dry Swales: Use Check Dams

Examples of longitudinal slope with check dams
Bioretention
POST-Construction Inspection

- Inlets – Water Still Getting In?
- Filter Bed – standing water, erosion, sinking?
- Vegetation & surface cover – Managed and healthy? Overgrown? Bare spots? Mulch need replacing?
- Check Dams in Dry Swales – By-passing and/or erosion?
- Outlets – erosion, blockages, clogging?
- Refer to construction record drawings (as-builts)
Standing water? Cause?

- Filter fabric, bad soil media, compaction, sediment film on top, clogged underdrain?
Possible Corrective Actions:

- Remove surface film of sediment; till in sand
- Unclog underdrains (if clogged)
- Punch through filter fabric (if present)
- Install wick drains
- Rebuild
Inlet Clogged With Too Much Mulch

If a little is good, more is not necessarily better!
Vegetation being maintained?
Over Time, Plants Should Fill Surface Area

Mix of Herbaceous, Shrubs

Mulch is a temporary surface cover
DOEE Inspection Form

Inspection Items

Inflow/Overflow:
- Is overflow invert at correct elevation?
- Is inflow pipe to filter plugged with watertight seal (prior to stabilization)?

Basin and Impermeable Liner (where applicable):
- Basin graded as per approved plan?
- Basin liner material and installation meets specification of approved plan? *(Attach labeled sample.)*

Underdrains:
- Do collector pipes meet specifications with correct hole pattern? *(Attach materials invoice.)*
- Do collector stone and stone beneath sand meet specifications and is installed to design depth?

Filter Media:
- Does the filter media meet specifications? *(Attach lab report and material certification.)*
- Filter media installed to design depth and compacted on ___________ (date) and refilled to designed depth?
DOEE Inspection Form

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioretention Plant Materials:</td>
<td>Do plants meet size and variety specifications?</td>
</tr>
<tr>
<td></td>
<td>Are all plants installed as per landscape plan?</td>
</tr>
<tr>
<td></td>
<td>Is mulch and cover crop installed as per plan specifications?</td>
</tr>
<tr>
<td></td>
<td>Are plant/ trees staked as per specifications?</td>
</tr>
<tr>
<td></td>
<td>Has watering of plant material been provided once a week during</td>
</tr>
<tr>
<td></td>
<td>first two months for fourteen consecutive days a planting</td>
</tr>
<tr>
<td></td>
<td>has been completed , then as needed during first growing season.</td>
</tr>
<tr>
<td>Observation Well Inlets:</td>
<td>Is observation well free of construction debris and soil?</td>
</tr>
<tr>
<td></td>
<td>Is outflow pipe invert at the design elevation?</td>
</tr>
</tbody>
</table>

Notes:

1. A qualified professional must treat disease plants.
2. Deficient stakes and wires must be replaced.
3. Dead plants or plants diseased beyond treatment must be replaced by plant meeting original specifications.
4. New plants must be watered every day for the first 14 days after planting.
Green Roofs
Green Roof Specification

- Preferred practice in high intensity redevelopment areas
- Allow for many different vendors and systems
- Follow ASTM specifications
Intensive

Extensive
Green Roof Feasibility Criteria

- Structural capacity of roof
- Roof pitch
- Setbacks from HVAC, etc.
- Compliance with building codes, fire code
Green Roof Landscaping Criteria

Plants need to resist and withstand:

- Drought
- Fire
- Wind
- Snow-loading
- Heat-stress
- Etc.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Light</th>
<th>Moisture Requirement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delosperma cooperi</td>
<td>Full Sun</td>
<td>Dry</td>
<td>Pink flowers; grows rapidly</td>
</tr>
<tr>
<td>Delosperma kelaidis</td>
<td>Full Sun</td>
<td>Dry</td>
<td>Salmon flowers; grows rapidly</td>
</tr>
<tr>
<td>Delosperma rubicorum Basutoland</td>
<td>Full Sun</td>
<td>Moist-Dry</td>
<td>Yellow flowers; very hardy</td>
</tr>
<tr>
<td>Sedum album</td>
<td>Full Sun</td>
<td>Dry</td>
<td>White flowers; hardy</td>
</tr>
<tr>
<td>Sedum lanceolatum</td>
<td>Full Sun</td>
<td>Dry</td>
<td>Yellow flowers; native to U.S.</td>
</tr>
<tr>
<td>Sedum oreganum</td>
<td>Part-Shade</td>
<td>Moist</td>
<td>Yellow flowers; native to U.S.</td>
</tr>
<tr>
<td>Sedum stoloniferum</td>
<td>Sun</td>
<td>Moist</td>
<td>Pink flowers; drought-tolerant</td>
</tr>
<tr>
<td>Sedum telephium</td>
<td>Sun</td>
<td>Dry</td>
<td>Blue green foliage; native to region</td>
</tr>
<tr>
<td>Sedum terraeformum</td>
<td>Part Shade-Shade</td>
<td>Dry-Moist</td>
<td>White flowers; grows in shade</td>
</tr>
<tr>
<td>Sedum spathulifolium</td>
<td>Sun</td>
<td>Dry</td>
<td>Blue green foliage; native to region</td>
</tr>
<tr>
<td>Sedum alpestre</td>
<td>Sun</td>
<td>Dry</td>
<td>Blue green foliage; native to region</td>
</tr>
<tr>
<td>Sedum coccineum</td>
<td>Sun</td>
<td>Dry</td>
<td>Pink flowers; self sow</td>
</tr>
</tbody>
</table>

Table 3.1.2: Ground Covers appropriate for Green roofs in the District

Note: Designers should choose species based on shade tolerance, ability to sow or not, foliage height, and spreading rate. See Snodgrass and Snodgrass (2006) for definitive list of green roof plants, including accent plants.
Green Roof Retention Value Calculations

Retention Value = \(Sv = 100\% \) of Storage Volume in Media and Drainage Layer
Green Roof Construction Notes
Site Conditions & Access

Notice the wall is wet.
Types of Green Roofs

- built-in-place
- roll & mat
- modular tray system
Testing the Membrane

Technologies for leak detection:
• Flood testing
• Electric Vector (system installed with membrane)
• Infrared Testing
• Nuclear Testing
DOEE Inspection Form

<table>
<thead>
<tr>
<th>Inspection Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Proofing:</td>
</tr>
<tr>
<td>Certification: identify type: Hot or Cold applied?</td>
</tr>
<tr>
<td>Does the waterproofing system require an applicator “certified” by the manufacturer? (Attach certifications.)</td>
</tr>
<tr>
<td>Have the correct number of water proofing layers been installed (per plan or manufacturer specification)?</td>
</tr>
<tr>
<td>Does the membrane reinforcement and flashing meet plan specifications? (Attach invoice and/or manufacturer certifications.)</td>
</tr>
<tr>
<td>Is protection provided for water proofing membrane? (Specify membrane type and indicate the duration between installation of membrane and media.)</td>
</tr>
<tr>
<td>Do drain boxes, vent pipes, and other penetrations meet plan specifications?</td>
</tr>
<tr>
<td>Are all seams, joints, and edges caulked and sealed with approved grade of caulk or sealant?</td>
</tr>
<tr>
<td>Water Test:</td>
</tr>
<tr>
<td>Has an EFVM or water test been conducted? If a water test, verify the water test is conducted according to test standards demonstrating two inches of water ponding for a 24 – 48 hour period (Attach water test report.)</td>
</tr>
</tbody>
</table>
DOEE Inspection Form

<table>
<thead>
<tr>
<th>Inspection Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Roof Components:</td>
</tr>
<tr>
<td>Do the overflow drains and drain boxes meet plan specifications?</td>
</tr>
<tr>
<td>Were all layers installed per plan cross-section? (Attach manufacturers’ certifications)</td>
</tr>
<tr>
<td>Does the growing media meet plan specifications? (Attach manufacturers’ certifications)</td>
</tr>
<tr>
<td>Does the metal curbing and flashing meet plan specifications? (Attach manufacturers’ certifications)</td>
</tr>
<tr>
<td>Do pedestals and pavers and non-vegetated areas meet plan specifications (type and location)?</td>
</tr>
<tr>
<td>Irrigation:</td>
</tr>
<tr>
<td>Is there an irrigation system?</td>
</tr>
<tr>
<td>Is the system installed to plan specifications? Verify water source.</td>
</tr>
<tr>
<td>Plantings and Housekeeping:</td>
</tr>
<tr>
<td>Modular System___ Vegetated Mats___ Plugs___ Other___</td>
</tr>
<tr>
<td>Do plants meet plan specifications for size and variety?</td>
</tr>
<tr>
<td>Are all plants installed per plan specifications? Note the planting distribution, depth of media, and whether or not adequate watering was provided.</td>
</tr>
<tr>
<td>Is temporary netting or wind uplift protection required?</td>
</tr>
<tr>
<td>Have all planting waste materials and construction trash and debris been removed?</td>
</tr>
</tbody>
</table>
Tree Planting and Preservation

- 1,500 cf of soil volume per tree, or 1,000 cf per tree with shared rooting space
- Preserved trees get **20 cubic foot** retention value
- New trees get **10 cubic foot** retention value
DOEE Inspection Form

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Planted Trees:</td>
<td></td>
</tr>
<tr>
<td>Do the tree species match the planting plan?</td>
<td></td>
</tr>
<tr>
<td>Do the trees have a minimum caliper size of 1.5 inches?</td>
<td></td>
</tr>
<tr>
<td>Planting Sites:</td>
<td></td>
</tr>
<tr>
<td>Is there enough overhead clearance for pedestrians and vehicles?</td>
<td></td>
</tr>
<tr>
<td>Planting Techniques:</td>
<td></td>
</tr>
<tr>
<td>Is the root collar exposed?</td>
<td></td>
</tr>
<tr>
<td>Has the wire and as much of the burlap as possible been removed from ball and burlap trees?</td>
<td></td>
</tr>
<tr>
<td>Have circular roots been pruned from container-grown trees?</td>
<td></td>
</tr>
<tr>
<td>Are erosion control blankets or other appropriate practices in place on steep slopes?</td>
<td></td>
</tr>
<tr>
<td>With slopes steeper than 3:1, are trees planted on a level space on the slope?</td>
<td></td>
</tr>
<tr>
<td>Post-Planting Tree Protection:</td>
<td></td>
</tr>
<tr>
<td>Has 2-4 inches of organic mulch been spread over the soil surface out to the drip line of the tree?</td>
<td></td>
</tr>
<tr>
<td>Are trees staked only if there is a concern of vandalism or windy exposure?</td>
<td></td>
</tr>
</tbody>
</table>
DOEE Inspection Form

<table>
<thead>
<tr>
<th>Inspection Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting Sites:</td>
</tr>
<tr>
<td>Was the appropriate tree planted in the best location based on urban planting constraints?</td>
</tr>
<tr>
<td>Are clear sight lines provided along street and in parking lots?</td>
</tr>
<tr>
<td>Is there enough overhead clearance for pedestrians and vehicles?</td>
</tr>
<tr>
<td>Is there at least 2 cubic feet of useable soil per square foot of average mature tree canopy?</td>
</tr>
<tr>
<td>Planting Techniques:</td>
</tr>
<tr>
<td>Is the root collar exposed?</td>
</tr>
<tr>
<td>Are erosion control blankets or other appropriate practices in place on steep slopes?</td>
</tr>
<tr>
<td>With slopes steeper than 3:1, are trees planted on a level space on the slope?</td>
</tr>
<tr>
<td>Post-Planting Tree Protection:</td>
</tr>
<tr>
<td>Has 2–4 inches of organic mulch been spread over the soil surface out to the drip line of the tree?</td>
</tr>
<tr>
<td>Are trees staked only if there is a concern of vandalism or windy exposure?</td>
</tr>
</tbody>
</table>
Sand-Based Structural Soil (621.71)
AGENDA

- Permeable Pavement
 - Materials
 - Construction

- BioRetention
 - Materials
 - Construction
Permeable Pavement

- Submittals
- Materials
- Construction
SUBMITTAL PROCESS

- Process: similar to typical DDOT & VDOT projects

- Materials
 - Some Green Infrastructure / LID materials require additional testing and lead time
 - Standard materials sent through standard QA/QC
 - Other items, such as soils and landscape materials, have specific approval processes

- Reviewed During Pre-Construction Meeting
 - Submittal details
 - Material testing details
 - Submittal deadlines
PAVEMENT SUBMITTALS

- Test panel size is job-specific
- Require test section panel approval
 - Interlocking Concrete Permeable Pavers
 - Clay/Brick Pavers
 - Cobblestone
- Plant certifications required
- Porous asphalt
 - In most cases, contractor able to provide own mix design for submittal
 - Approved through the QA/QC system
- Pervious concrete
 - Prime contractor will submit their Craftsman’s resume for DOT’s approval
 - Mix design submitted and approved through QA/QC system
 - Pre-cast panels tested for infiltration at plant
CONSTRUCTION: PRE-PROJECT START UP

- Invite DOT, agencies, contractor, inspectors, utility companies, suppliers, craftsmen
- Identify constructability issues, including review of any pay items and quantities. For example:
 - Use of pre-cast materials in residential areas
 - Full width replacement of alleys vs. center strip placement of pervious pavement
- Discuss utility conflicts
 - Require physical location of all utilities prior to construction
 - Coordinate with utility companies
 - How should lines be protected?
PREPARATORY MEETING

- Review testing requirements and acceptance criteria for each material
- Discuss job-specific construction sequence
 - Look-ahead weekly schedule to ID any potential issues
 - Check sequence:
 - Pre-Construction
 - During Construction
 - Post-Construction
- Include Craftsman and utility companies
E & S Control
• Avoid contamination

CONSTRUCTION: SEQUENCE & METHODS

Erosion & Sediment Control

- Ensure proper installation and maintain according to approved plans
- Divert storm water runoff
- Stabilize contributing drainage area
CONSTRUCTION

Make sure to
• Require covering/other measures of protection throughout life of the contract
• Include in specs that a Craftsman is required for pervious concrete placement
• Have Craftsman on-site
• Require trained on-site technician from material supplier

Pervious Concrete
➤ Buggy vs. pumping concrete in tight areas
➤ Use of pre-cast vs. cast-in-place concrete
➤ Verify concrete ticket is the approved mix design
➤ Check target weight. Loads on either high or low end will affect performance of concrete
➤ If unit weight isn’t within tolerance, reject the load
➤ Inspector must document each load’s unit weight and placement
➤ Craftsman is responsible for ensuring mix is correct, testing unit weight, and for installation of concrete
➤ Cut Core sample after recommended cure time for acceptance
➤ Test section panel approval
➤ Infiltration test after recommended cure time for acceptance
Porous Asphalt

- Verify asphalt ticket is approved mix design
- Test and document temperature of mix
 - When delivered
 - Prior to placement
 - Behind paver after placement
- If asphalt temperature falls below specs, reject the load
- Minimize hand work
- After recommended cure time for acceptance:
 - Core sample
 - Infiltration test
 - Box sample

Testing
- Check special provisions for Infiltration Test requirements
- Require minimum temperature
- Minimum width 8’
CONSTRUCTION - INSTALLATION OF PAVEMENT

Make sure to
• Verify type, specific color, shape, width, and thickness of cut pavers as detailed in specs
• Place string lines every 10 feet, discuss at Pre-Con
• Check paver pattern direction 90° vs. 45°

Permeable Pavers

- Edging inside area should be straight
- Verify:
 • Delivered material is what was approved by QA/QC (type, specific color, shape, width, and thickness of cut pavers as detailed in specs)
 • Installation design is per the plans
 • Conduct infiltration test after area is completed
 • Include in specs that a Craftsman (PICP Specialist) is on site when pavers are installed
 • At least one installer should be certified
AGENDA

- Permeable Pavement
 - Materials
 - Construction

- BioRetention
 - Materials
 - Construction
Bio Retention Soil Submittals

Measuring Bio-Mix Soil

- **In percentages:**
 - Mass
 - Weight
 - Volume
 - Gradation

- Multiple testing agencies may be required in order to get all of the necessary testing required for submittal

Step One – Individual Parts

- Each part of the soil composition must be submitted individually, i.e. sand, silt, clay, etc.
 - Reviewed by CM, and submitted to DOT lab
 - Approved by DOT

Step Two – Completed Mix

- Once combined, a sample of the completed mix is sent to DOT labs
- Lab test results from soil supplier are submitted for approval and review
 - Reviewed by CM
 - Approved by DOT
STONE SUBMITTALS

- All double-washed clean
- Standard QA/QC
- Tickets must read “double-washed.”
- Check with suppliers to see if they can offer double-washed stone
FABRIC SUBMITTALS

- Design – be specific about type and locations of fabric
 - Geotextile, Class 1
 - Use in high-risk areas, like the bottom of a bio-retention cell
 - Geotextile, Class 2
 - Use in areas where there is little to average risk of damage, like sides
 - Impermeable Waterproof Membrane
 - Specify mil thickness
 - Use next to roads to protect base and near buildings to act as a shield
 - Construct check dams
PLANT & LANDSCAPE SUBMITTALS

- Plant submittal is a multi-step approval process
- Job-specific plant list must be submitted and approved prior to nursery visit

- Key item:
 - Identify plant substitutions and ensure plant availability
 - Any plant substitutions must be approved by DOT
 - Involve a landscape experts, such as a landscape architect and inspector
Excavation

- Do not compact subgrade
- Verify subgrade elevation, width, depth, subgrade, and step downs
- Inspect subgrade
 - Example:
 - Geotextile fabric can be used on sandy soil subgrade to help with infiltration
- Subgrade must be scarified prior to stone placement
- Final grade must leave enough room for concrete placement, paver placement, plants and mulch
- Document as-builts
CONSTRUCTION: SEQUENCE & METHODS

Underdrain Pipe and Clean Out

- Verify
 - Connection point
 - Installation is per plan elevation
 - Invert is per plan
 - Submitted underdrain pipe is used

- Check plans to determine what areas get standard pipe vs. perforated pipe

Underdrain Connections

- Connect to existing:
 - Inlet
 - Manhole
 - Storm/Sewer pipe

- All connections need to be made per plan and according to the Authority’s requirements/spec

- Discuss at Preparatory Meeting and walk the site
Consortium: Sequence & Methods

Check Dams - Geotextile Fabric & Waterproof Membrane

- Install per plan and as needs determine in the field.
 - Follow plans
 - Use common sense
- Some retention areas may require different geotextile within the same area.

Bio-Retention Cells
- Protect cells from contamination
CONSTRUCTION: SEQUENCE & METHODS

Waterproof Membrane

- Examine all WPM for punctures and/or rips prior to, during, and following installation
- Use WPM to construct check dams
- WPM must be overlapped and lapping must be glued to create seal
CONSTRUCTION: SEQUENCE & METHODS

Stone Storage
• Prevent contamination of stone at quarry and at job site
• Conduct stock pile inspection at quarry
• Use photos to document stone deliveries
• Have stone supplier at Pre-Con meeting
• Haul stone in clean trucks

Stone Placement

➤ All layers should be compacted according to locality’s Special Provision for Aggregate Base material for permeable pavement and bio-retention areas

1. Filter layer
2. Reservoir layer
3. Base layer
4. Bedding layer
CONSTRUCTION

Installation of Bio retention Soil

- Before placing any soil, verify elevations of the curbing and final grading
- Confirm facility drains properly
- Verify delivered mix is the same as the approved mix design
 - Take sample of material – In case independent lab tests are needed.
 - The soil may be placed in no greater than 12” lifts
 - Tamp with a plate tamper to density percentage specified in the plans/special provisions

Make sure to
- Check levels
- Check grading
- Tamp, but DO NOT compact
- Verify density as per the plans/specs
- Be careful to avoid soil compaction by equipment, people, etc.
CONSTRUCTION

Plants & Landscape

- Prior to leaving nursery- plant material must be inspected, approved, and tagged
- Involve a landscape expert such as a landscape architect
- Verify that planting areas are ready for plant installation
- The General Contractor, Construction Manager, and Landscape Subcontractor must be in-sync
- Follow specs and plans when laying out plants
- Use string or spray paint to mark placement and edges (ex.- X for trees, O for shrubs, perennials, and grass)
- Be flexible in layout and placement +/- 1 foot

Make sure that

- Job-specific plant list has been approved prior to visit
- All plants match specs
- Plant material should not arrive until the site is approved
- If the plants sit on the truck or if they have to be sent back to the nursery, they could go into shock
Tree Space Design Standards

- **Soil Volume Requirement**
 - Varies based on size of tree 1500/1000/600 cf
 - Open or covered soil volume options

Large Tree 1500 cu ft

Small Tree 600 cu ft
- 25% Volume reduction allowed when trees planted with shared soil (450/750/1250 cf)
- Refer to Green Infrastructure Standards list Trees for Public Space

Tree Soil Volume Requirement

- 600 cubic feet
- 1,000 cubic feet
- 1,500 cubic feet
Tree Space Design

- Types of Tree Space Design

 - Structural Soils
 - Structural Cells
 - Suspended Sidewalk
Tree Space – What’s below?

- **Permeable Paver:** Permeable pavers allow water to infiltrate into the soil to be used by the trees.
- **Slot Drain:** Can be implemented in conjunction with impermeable pavement to catch runoff and direct it into soils.
- **Mulch:** Shredded hardwood layer to retain water and trap pollutants.
- **Planting Soil:** Uncompacted, soil mix used in open areas or with structural cells or suspended sidewalks and allows root growth.
- **Structural Soil:** Supports pavement and allows root growth.
- **Sand:** Acts as a drainage layer for excess stormwater (when needed).
- **Uncompacted Subgrade:** Existing soil where stormwater infiltrates.
Tree Planting

- 2 Planting Seasons
- Spring / Fall
- Contact UFA for a Ward assigned Arborist
- UFA inspections can happen any time
Tree Planting

- **2 Planting Seasons**
- **Spring / Fall**
- **Contact UFA for a Ward assigned Arborist**
- **UFA inspections can happen any time**
Tree Protection

- Tree roots are often shallow like a pancake

- **First and Last** phase of construction
- **DOEE SWM Regulations** implication
 - Preserved Trees: 20 cubic feet retention value
 - Planted Trees: 10 cubic feet retention value
• 6’ height chain link fence on all sides of existing tree
• 4’ x 9’ minimum (tree planting space) area
• Anchored to ground preferred
• Water weekly during construction
• No stocking of materials
• Contact UFA
Tree Protection - Drawings

- 6’ height chain link fence on all sides of existing tree
- 4’ x 9’ minimum (tree planting space) area
- Anchored to ground preferred
- Water weekly during construction
- No stocking of materials
- Contact UFA
Tree Protection Fence - Good

- 6’ height chain link fence on all sides of existing tree
- 4’ x 9’ minimum (tree planting space) area
- Anchored to ground preferred
- Water weekly during construction
- No stocking of materials
- Contact UFA

- 2013 DDOT Standard Specification, 608.07 TREE PROTECTION AND REPLACEMENT
Tree Protection Fence - Poor

- “Snow fence” no longer permitted
- No stocking of materials
- Contact UFA
Tree Preservation Measures

Hand Digging

Air Spade
Porous Rubber Paving

Before

After
Tree Removal (Permit)

- **Street Tree Removal**
 - Located between curb and sidewalk
 - No Size Restrictions
 - TOPS → Const. Permit → Landscape
 - $200 per inch dia.
 - 15 business days review period

- **Special Tree Permit *Amended Act***
 - Located behind the sidewalk and on private property
 - 44 - 100” circumference (~14 - 31.8” diameter)
 - TOPS → Special Tree Removal Permit
 - $55/inch circumference or plant to match
 - 40 days from date assigned

- **Heritage Tree 100”+ = No Removal**
The Good, The Bad, and the Ugly
Top Ten Inspection Issues

1. Stone with too many fines (for infiltration and permeable pavement). Designers need to spec “double washed stone.”
Top Ten Inspection Issues

2. Not having the DOEE approved drawing on site (working copy or latest unapproved revision is missing a bmp in the PROW or shows a reduction in green roof area)
Top Ten Inspection Issues

3. Failing to protect a BMP during construction.
Top Ten Inspection Issues

3. Failing to protect a BMP during construction.
Top Ten Inspection Issues

3. Failing to protect a BMP during construction.
Top Ten Inspection Issues

4. Site grading doesn’t direct stormwater to the BMP.
Top Ten Inspection Issues

5. Too many pipes/inputs into a stormwater vault (groundwater should be routed into the last vault chamber; condensate needs to be accounted for in the calculations if it comes into the first chamber)
Top Ten Inspection Issues

6. Failing to account for HVAC units/satellite dishes placed on green roofs.
Top Ten Inspection Issues

7. Compacting infiltration areas during construction (heavy equipment storage)
Top Ten Inspection Issues

8. Discharging through a stormwater vault before a final inspection while the site is still disturbed. A discharge permit from D.C. Water is required in the CSS. It is not allowed in the MS4.

9. Changing green roof material suppliers without DOEE approval (green roof media has lower max retention)

10. Submitting as-builts that are just copies of the approved drawing. Cross sections need to be to scale and actual invert elevations need to be provided.