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Introduction 

Tropospheric ozone (O3) is a major component of photochemical smog. This reactive molecule is 

known to have harmful effects on human health, vegetation, visibility, and climate (Sousa et al 

2008, WHO, EEA). Because it is so unstable and highly reactive, O3 can readily deposit itself on 

biological tissues and contributes to premature deaths and other negative health outcomes such 

as asthma exacerbation. O3 is a secondary gas, which is created by the photochemical reaction 

between precursor pollutants, volatile organic compounds (VOCs), and nitrogen oxides (NOx) in 

the presence of sunlight. Equations 1-4 explain the formation and depletion of ground-level O3. 

2𝑁𝑁𝑁𝑁 +  𝑁𝑁2 → 2𝑁𝑁𝑁𝑁2 (1) 

𝑁𝑁𝑁𝑁2 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑡𝑡 → 𝑁𝑁𝑁𝑁 + 𝑁𝑁  (2) 

𝑁𝑁 +  𝑁𝑁2  →  𝑁𝑁3 (3) 

𝑁𝑁3 + 𝑁𝑁𝑁𝑁 → 𝑁𝑁𝑁𝑁2 +  𝑁𝑁2 (4) 

Firstly, nitric oxide (NO) reacts with oxygen (O2) to produce nitrogen dioxide (NO2). In the 

presence of sunlight, NO2 breaks apart to form NO and a free oxygen atom. The free oxygen 

atom collides with molecules of oxygen to form O3. O3 is later destroyed by NO to form NO2 

and O2. 

Generally, highest levels of O3 occur during the hottest part of the year. In the District, the 

highest O3 levels are generally seen from May 1st to September 30th. During the day, O3 



typically peaks in the mid to late afternoon when the presence of consistent sunlight helps fuel 

the reaction. 

An increase in the vehicular traffic and industry has caused a rise in this criteria pollutant in 

urban areas. Levels of O3 are also known to be influenced by meteorological variables such as 

temperature, solar radiation, wind speed (upper atmosphere and boundary layer), and relative 

humidity.1 Several studies have shown the strong relationship between temperature and surface 

O3.2–4 Camalier et al. 2007 found that temperature was a major driver behind O3 levels in the 

northeast,5 while relative humidity strongly influenced O3 levels in the southeastern region of the 

United States.6  Stratospheric O3 exchange,7 along with regional O3 transport affect the locally 

observed levels of O3 at the surface. The primary sinks of ground level O3 include titration 

through reactions with nitric oxide (NO) and dry deposition.8 

The Clean Air Act requires the Environmental Protection Agency (EPA) to set National Ambient 

Air Quality Standards (NAAQS) for the six criteria pollutants. In 2015, the EPA strengthened the 

8-hour NAAQS for O3 to 70 ppb and in 2018, the District and the surrounding metropolitan area 

were designated as marginal nonattainment for the 2015 O3 NAAQS. O3 in the District is 

primarily driven from regions upwind of the city. According to modeling performed, and 

extensive research, nearly 90% of ozone pollution in the DC-MD-VA region is transported from 

other states.9,10 However, the 2020 COVID health emergency led to lower O3 levels in the 

District due to traffic disruption. Similar phenomena were seen across the country as 

demonstrated in Chen et al. 2020.11 During the first half of 2020, global emissions of CO2 

decreased by 8.8% and the European Union reported upwards of 60% reduction for NOx .12–14  

Goldberg et al. 2020 reported a median drop of 21.6% of NO2 in 20 North American cities 

during the spring of 2020.15 The reductions led to better air quality, but the changes in emissions 



are not permanent, nor enforceable. A report from the mobility data firm INRIX stated the DC 

region had the largest drop in traffic congestion (77%) in 2020 out of other major cities from 

around the world.16 The Department of Energy and Environment (DOEE) is petitioning for the 

2020 health emergency to be considered an exceptional event. Although exceptional events 

usually involve exceedances, the 2020 health emergency should also be considered one because 

it was uncontrollable, caused a decrease in traffic that is not likely to reoccur, and it was directly 

related to the spread of Covid-19, which evidence points towards being a natural (zoonotic 

transfer) event, and treating the data as policy relevant can have long term impacts on the air 

quality of residents of the District of Columbia. 

The objective of this study is to build an ozone forecasting tool using meteorological variables 

from 2013-2017 using quantile regression (QR) and ordinary least squares (OLS) regression. 

This forecasting tool will then be used to predict ozone for years 2018 and 2019 to demonstrate 

that the tool produces reasonable results during a typical ozone season and will also be used to 

predict ozone for 2020, to demonstrate that the 2020 ozone season was atypical despite 

meteorological factors.  

QR is a useful mathematical tool that models the relationship between covariates and quantile 

functions.17 This regression is particularly important for environmental studies when explaining 

outliers and looking at an entire distribution. On the other hand, OLS is a simple model that is 

used to estimate a relationship between two variables using linear regression. This work will 

compare the O3 forecasting results from QR and OLS using meteorological data measured at the 

McMillan monitoring site in the District. 

 



Methods 

The District maintains a network of monitoring stations that measure outdoor air quality. 

Meteorological variables and concentrations of ozone in this study were recorded at the 

McMillan Reservoir site (ID:11-001-0043, 38.9218oN, -77.0132oE). The data is integrated into 

the Air Quality Monitoring Network of the DOEE. Use of monitored data from the Takoma 

Recreation Center (ID:11-001-0050) and River Terrace (ID:11-001-0041) sites were also 

considered, but data sets were not complete for the time period examined so they were not used.  

The meteorological variables and O3 concentrations were continuously monitored and hourly 

averages were recorded. O3 concentrations were measured using UV-absorption photometry. 

Meteorological variables considered for this study include temperature, pressure, wind speed, 

wind speed at both 500 and 850 mb, wind direction, wind direction at both 500 and 850 mb, 

precipitation the day before, relative humidity, global horizontal irradiance and geopotential 

height. All instruments underwent a rigorous maintenance procedure with periodic calibrations.  

Table 1: Instrumentation used in this study. All instruments are located at the McMillan site in 

the District. 

Instrument Measurement 

Thermo 49i Ozone 

WXT536 Weather Sensor: Temperature, Humidity, 
Pressure, Rainfall, Wind 

WMT702 Wind Sensor 

HMP155 Humidity and Temperature Probe 

PTB110 Barometric Pressure 

 



Upper atmosphere variables were obtained from sounding data at Dulles airport in Sterling, 

VA.18 Geopotential height data was acquired from European Centre for Medium-Range Weather 

Forecasts (ECMRWF) reanalysis version 5 or ERA5.19 2013-2017 solar radiation data was 

retrieved from the National Renewable Energy Laboratory (NREL) while 2018-2020 data came 

from the District’s McMillan monitoring site. All meteorological data missing from the 

McMillan monitoring site was substituted with meteorological data from the District’s Near-

Road (ID:11-001-0051) site to provide for a more complete data set. The forecasting tool 

developed in this study uses O3 season meteorological data and temporal variables (day of the 

week, hour of the day, year) from years 2013-2017.  

The Models 

Ordinary Least Squares (OLS) 

OLS is a linear least squares method that models the relationship between one or multiple 

independent variables (x) and the conditional mean of the dependent variable (y) assuming a 

constant variance. The dependent variable in this study is the 1-hr ozone concentration. OLS is 

sensitive to outliers and assumes normality. The following equation explains this simple linear 

regression model: 

𝑦𝑦𝑖𝑖 =  𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖 (5) 

Where α is the y-intercept, β is the population slope coefficient (by minimizing the error of 

prediction) and εi is the error term.  There are 55 regressors or independent variables xi included 

in this model. 

 



Quantile Regression (QR) 

Quantile Regression is an extension of least square regressions where one can study the 

relationship amongst variables at different distributions. These different distributions are 

quantiles (τ or percentiles). This statistical modeling tool was first developed by Koenker and 

Bassett (1978) and is considered a robust method of analysis to outliers in a dataset.20 It provides 

a more comprehensive overview of the independent variable’s effect on the dependent variable. 

The QR model equation for the τth quartile is as follows 

𝑄𝑄𝜏𝜏(𝑦𝑦𝑖𝑖) = 𝛽𝛽0(𝜏𝜏) + 𝛽𝛽1(𝜏𝜏)𝑥𝑥𝑖𝑖1 + ⋯+ 𝛽𝛽𝑝𝑝(𝜏𝜏)𝑥𝑥𝑖𝑖𝑝𝑝  (6) 

where p is the number of regressor variables, β0(τ) is a constant and βp(τ) are the coefficients at 

several quantiles. Further information on QR can be found in Baur et al. 2004.21 There are also 

55 regressors or independent variables xip included in this model.  

Performance Index Parameters 

The performance of the QR and OLS models was evaluated by calculating the following 

statistical parameters: normalized mean bias (NMB), normalized mean error (NME) and root 

mean square error (RMSE).  

NMB averages the difference (model-observations) over the sum of the observed values. It is 

defined as: 

𝑁𝑁𝑁𝑁𝑁𝑁 = ∑ (𝑃𝑃−𝑂𝑂)𝑛𝑛
1
∑ (𝑂𝑂)𝑛𝑛
1

 (7) 

where P is the predicted concentrations and O is the observed concentrations. Similar to NMB, 

NME looks at the absolute value of the difference over the sum of the observed values. NME is 

defined as:  



𝑁𝑁𝑁𝑁𝑁𝑁 = ∑ |𝑃𝑃−𝑂𝑂|𝑛𝑛
1
∑ (𝑂𝑂)𝑛𝑛
1

 (8) 

RMSE is a metric that tells the average distance between the modeled values to the observed 

values. RMSE is defined as: 

𝑅𝑅𝑁𝑁𝑅𝑅𝑁𝑁 = �[∑ �𝑧𝑧𝑓𝑓𝑖𝑖 − 𝑧𝑧0𝑖𝑖�
2

/𝑁𝑁]𝑁𝑁
𝑖𝑖=1  (9) 

Results and Discussion 

The study was performed to predict ozone levels for the District. Several predictor variables 

were used, and the data was divided into three datasets: (i) 2013-2017; (ii) 2018-2019; and (iii) 

2020.  

Ozone and Temperature 

The relationship between O3 and temperature in the District was evaluated using linear 

regression analysis. Previous studies have shown temperature being a good predictor of ground-

level O3. Higher temperatures speed up the rate of chemical kinetics and increase the emissions 

of biogenic VOCs. Figures 2a-c show the correlation between O3 and ambient temperature for 

the McMillan site during the O3 season. Data from years 2013-2017 were used to create the 

model. The model was used to predict O3 levels in 2018 and 2019 and compared to ambient data 

in those respective years. 2020 was the year of the exceptional event, and the model developed 

with 2013-2017 data was compared to ambient 2020 data using QR and OLS. 



 

Figure 2: Correlation of O3 and ambient temperature during years a) 2013-2017 b) 2018-2019 c) 

2020. 

For all years, O3 generally increased with temperature. The linear fit for years 2013-2017 (Figure 

2a) and 2018-2019 (Figure 2b) yielded very similar slopes. The statistical results are provided in 

Table 2. It was observed that there was some non-linearity at higher temperatures and QR is a 

useful tool that accounts for heterogeneity of extreme values.  

Ozone and Relative Humidity 

Relative humidity is another meteorological variable that influences tropospheric O3 variation. 

Simple regression analysis was used to assess the influence of relative humidity on ozone 

formation. Results from the McMillan monitor indicate an inverse relationship between the two 

variables. Previous studies have also shown this strong negative correlation.22–27 Figures 3a-c 

show this correlation for ozone season during the different groups of years. Table 2 provides the 

linear regression coefficients.  

c) 



 

Figure 3: Correlation of O3 and ambient relative humidity during years a) 2013-2017 b) 2018-

2019 c) 2020. The different grouped years have similar slopes. 

Some factors to explain this inverse relationship between ozone and relative humidity include the 

following: (1) humid days associated with increased cloud cover and thus less solar radiation for 

photochemical reactions, (2) humid days associated with precipitation and the reduction of 

precursor emissions, (3) stratospheric intrusions of dry, ozone rich air,27 and (4) affects chain 

termination reactions.22 

Ozone and Wind Speed 

Regression analysis was used to characterize the relationship between hourly O3 and hourly wind 

speed in the District. Dueñas et al. reported that wind speed is one of the most influential 

meteorological variables to impact ozone concentrations at their coastal site.22 Wind speed is 

known to be an important factor for pollution dispersion and for stratospheric ozone transport. 

Within the District, a weak positive correlation was observed for the several years of analysis. 

Figures 4a-c depicts this relationship. 

c) 



  

Figure 4: Correlation of O3 and ambient wind speed during years a) 2013-2017 b) 2018-2019 c) 

2020. The different grouped years have weak correlations with similar slopes. 

Generally, a rise in wind speed leads to a rise in the transport of air masses, and thus a dilution in 

primary pollutants. However, this is more complex for secondary pollutants such as ozone. 

Higher wind speeds induce lower NOx, and subsequently higher O3.28–30 Northern cities on the 

east coast are more influenced by transport and cities downwind major sources may encounter an 

increase in O3 at higher wind speeds.31 

Ozone and Global Horizontal Irradiance (GHI) 

GHI is a measurement of the total irradiance from the sun on a horizontal surface. In the District, 

O3 saw a positive correlation with solar radiation. An increase in solar irradiance leads to an 

increase in photochemical reactions that induce O3 formation. Figures 5a-c show the correlation 

between the two variables. 

c) 



 

Figure 5: Positive correlation of O3 and solar radiation during years a) 2013-2017 b) 2018-2019 

c) 2020. The different grouped years have similar slopes. 

Ozone and other Independent Variables 

The objective of this study was to assess the effects of several meteorological variables on 

ground level ozone concentrations through linear regression and quantile analysis. Table 2 

provides linear regression statistics for correlations between O3 and several independent 

variables. 

Table 2: Linear Regression statistics for several correlation studies. The dependent variable (y) is 

O3 and the independent variable (x) is a meteorological variable. 

Independent 

Variable (x) 

Linear 

Regression 

(2013-2017) 

Linear 

Regression 

(2018-2019) 

Linear 

Regression 

(2020) 

R2 (2013-

2017; 2018-

2019; 2020) 

Temperature 

(OC) 

y=1.64x-4.49 y=1.73x-4.54 y=1.7=13x+6.96 0.34; 0.38; 

0.25 

c) 



 

Although low in correlation, ozone is inversely related to pressure and the prior day’s 

precipitation. When looking at the upper atmosphere variables, ozone is inversely related to wind 

speed and positively correlated to the geopotential height. 

 

 

 

Relative 

Humidity (%) 

y=-0.578x+67.3 y=-0.591x+73.6 y=-0.492x+65.1 0.38; 0.45; 

0.43 

Pressure (mb) y=-0.398x+433 y=-0.430x+469 y=-0.551x+589 0.02; 0.02; 

0.05 

GHI (Wm-2) y=0.0279x+25.3 y=0.0301x+28.7 y=0.0244x+26.3 0.28; 0.32; 

0.24 

Precipitation 

(inches; day 

before) 

y=-1.83x+31.7 y=-2.34x+35.4 y=-2.34x+35.4 <0.01; <0.01; 

<0.01 

Wind Speed 

(boundary 

layer) 

y=1.12x+25 y=1.13x+27.9 y=1.10x+25.8 0.04; 0.04; 

0.05 

Wind Speed 

(500 mb) 

y=-0.0361x+32.6 y=-0.162x+39.6 y=-0.051x+33.4 <0.01; 0.03; 

<0.01 

Geopotential 

height (m) 

y=0.00251x-108 y=0.00209x-87.2 y=0.000049x+29 0.02; 0.01; 

<0.01 



Ozone and Wind Direction 

Wind direction at ground-level and in the upper atmosphere, play an important role in the 

determination of ozone levels in the District. Here, we look at the wind direction’s effect on the 

top 5% values of ozone during the years 2013-2017, 2018-2019 and 2020 (May 1-October 31) 

with violin plots (see Figure 6). Violin plots depict the distribution of numerical data using 

density curves. Surface-level winds out of the southwest contributed to the greatest median of 

ground-level ozone in 2020, while winds from the northeast and northwest at 500 mb and 850 

mb contributed the greatest median ground-level ozone, respectively. Larger distributions of 

ozone were observed from surface-level winds out the south, southwest, and southeast. For years 

2013-2019, surface-level winds from the south led to a higher median of ozone, and winds out of 

the southwest contributed to higher level ozone during the years 2018-2019. More information 

about the contribution of upper atmosphere wind direction is shown in Figure 6.  



 

Figure 6: Violin plots depicting the effect of ground-level and upper-atmosphere wind 

direction on the surface-level ozone for the three different datasets: (a) 2013-2017 ground-

level wind direction (b) 2013-2017 wind direction at 500 mb (c) 2013-17 wind direction at 

850 mb (d) 2018-2019 ground-level wind direction (e) 2018-2019 wind direction at 500 mb 

(f) 2018-2019 wind direction at 850 mb (g) 2020 ground-level wind direction (h) 2020 wind 

direction at 500 mb and (i) 2020 wind direction at 850 mb. 



Ozone’s relationship with Day of the Week and Time of Day 

Ground-level hourly ozone was monitored daily in the District. The ozone levels were compared 

for different days of the week and at various hours of the day. In 2020, the median ozone was 

greatest on Wednesday, with the largest distribution of data found on Tuesday, Wednesday and 

Thursday. Greatest ozone levels were observed during the mid-day hours (12 pm- 3pm local) as 

expected. Unlike 2020, the greatest median of ozone was observed during the weekend for years 

2018-2019. However, the time of day trend for 2018-2019 matches year 2020. As observed with 

2018-2019, the greatest ozone median occurred during the weekend for years 2013-2017. Peak 

ozone was also reached during the mid-day hours of 12 pm-3pm local time. 

QR and OLS Compared to Observed Values 

QR and OLS models were used to forecast ozone levels in the District. Figures 7a-h shows time 

series of predicted values (using QR and OLS) and the measured data for the ozone seasons of 

2013-2020. Additional graphs comparing the coefficients of OLS and QR at different percentiles 

for all 55 regressors are provided in Supplemental Information (Figure S1). Generally, the 

models capture the peaks, but not always the magnitude. Table 3 shows the performance indexes 

of the three datasets using both models. It was observed that the QR model had the lowest 

magnitude for NMB during years 2014-2017. All years exhibited positive NMB values using 

QR. On the other hand, the OLS model underpredicted for every year except for 2020. The 2019 

and 2020 NMB, NME and RMSE OLS value were lower in magnitude, when compared to QR 

during those two years. Thus, the OLS model predicted the District’s ozone levels during the 

exceptional event, and during the year with the highest number of 90oF days best (2019; 34 

days). The RMSE measures the quality of the fit of the model, where a value of zero indicates a 

perfect fit. The average RMSE value for the QR model (2013-2020) was 3.10 while the average 



RMSE value for OLS was 3.04. Overall, the OLS model was more efficient at forecasting ozone 

concentrations and proves to be beneficial for developing strategies to improve public health.  

 



Figure 7: Time series of the maximum daily 8-hour ozone during the ozone seasons of (a) 2013 

(b) 2014 (c) 2015 (d) 2016 (e) 2017 (f) 2018 (g) 2019 (h) 2020. Shown here are the measured 

(blue line) and the predicted values from the OLS (red line) and QR (green line) models.  

Table 3: Performance indexes of the models (OLS and QR) achieved for years 2013-2020 where 

max daily 8-hour ozone was 60 ppb. 

Year NMB NME RMSE 

OLS QR OLS QR OLS QR 

2013 -6.39 7.97 14.73 15.69 2.5 3.2195 

2014 -14.33 0.89 18.69 13.12 6.037 0.3741 

2015 -12.95 3.15 18.51 15.56 5.6147 1.3647 

2016 -7.65 7.51 16.33 15.29 3.3217 3.2617 

2017 -7.42 7.14 12.87 12.98 3.3601 3.2321 

2018 -4.95 7.46 14.95 14.70 2.1894 3.3022 

2019 -1.91 9.62 12.08 14.12 0.8359 4.2231 

2020 0.82 12.77 10.58 14.53 0.375 5.8229 

 

The performances of the models for the mean 8-hour daily ozone maximum and the 4th highest 

ozone maximum are shown in Figures 8a and 8b and numerical values are listed in Table S1 

(Supplemental Information). The QR and OLS models over-predicted the 8-hour daily ozone 

maximum for every year in this study, except for 2013, where OLS slightly underpredicted by 

less than 1%. 2020 had the lowest measured value and the greatest difference in magnitude 

between both model predictions and the measured value. The estimated values of OLS and QR 

overpredicted by ~12% and ~26% for 2020, respectively. On the other hand, the 4th highest 



ozone maximum OLS modelled values under-predicted for every year, ranging from ~2% to 

~18%. The 4th highest maximum for 2013-2019 was 65+ ppb, whereas 2020 was the only year 

where the observed value measured below 65 ppb. Years 2013-2019 had a major influence from 

human activity while 2020 had a lesser human impact due to the pandemic. The QR model 

underpredicted for every year, except 2020. However, it was able to closely estimate the 4th 

highest maximum during year 2019 where there were the greatest number of extreme 

temperatures (90oF +). The QR modelled result was ~8% higher than the observed value during 

the 2020 pandemic. On the other hand, the OLS underpredicted to a smaller degree for 2020 

(<2%). These changes in the OLS and QR modelled results for 2020 are likely attributed to the 

change in traffic patterns and anthropogenic emissions. 

 

Figure 8: Plots of the mean (a) 8-hour daily ozone maximum and the (b) 4th highest ozone 

maximum during the ozone season for years 2013-2020. 

Conclusions 

In this study, the analysis of the impact of meteorological variables and ozone precursors on 

ozone concentrations for several years was performed. This paper characterizes the effect of 



several parameters on ground-level ozone concentration in the District using OLS and QR 

models. The OLS model proved to be the most efficient model to predict ozone during the 

pandemic. Values of NMB, NME and RMSE were lower in magnitude for the OLS model 

during the pandemic year. 

The year 2020 experienced a noticeable drop in ozone due to the Covid-19 shutdown. This event 

should be considered an exceptional event because it was unavoidable, believed to have occurred 

naturally and caused a disruption in traffic that is not likely to reoccur. Here, QR and OLS model 

results showed 2020 ozone season data was an outlier in comparison to years 2013-2019. For the 

mean daily 8-hour max, both models overestimated the ozone concentration for the years 2013-

2019. However, the estimated value for both models were closer to the observed for 2020. On 

the other hand, the models’ predictions were overestimated for the 4th highest maximum of 8-hr 

ozone for the year 2020, and underpredicted for previous years. QR and OLS model results for 

2020 sharply deviated from model results of the previous years and this is likely attributed to the 

difference in human activity. Future work should account for the association of traffic 

characteristics with ground-level ozone concentrations. 
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