PROJECT OBJECTIVES

• Investigate noise impacts from DCA air traffic operations
• Thoroughly review existing data, supplemented by new investigations, to document the past and current airplane noise environment over the District
• Identify operational changes to minimize noise
• Review current noise abatement procedures
• Assist FAA in NextGen implementation while minimizing noise
• Develop revised air traffic procedures, acceptable to the FAA, to minimize the current noise impact on the District
NEXTGEN

• A new national airspace system transforming America’s air traffic control system from a ground-based navigation/radar system with radio communication, to a satellite-based (GPS) system

• Implementation across the U.S. from 2012 to 2025

• Advantages:
 • shorter routes (more direct)
 • saves time and fuel
 • reduces traffic delays
 • increases capacity
 • minimizes voice communication
 • greater safety
 • reduces controller and cockpit work load

• Disadvantage: New air traffic control routes were established over noise-sensitive areas.
PROJECT ACTIVITIES:
EXISTING DATA ASSESSMENT

• Noise complaints – historical review
• Published air routes – review and assess
• DCA noise monitoring records – review and assess
• Noise monitoring in the community
PROJECT ACTIVITIES:
PREDICTION AND RECOMMENDATIONS

• Sleep interference study
• Classroom disruption study
• Recommend new air traffic control routes and procedures
• Computer noise modeling – past and proposed
• Final report – written and presentation
AIR TRAFFIC CONTROL PROCEDURES
APPROACH AND DEPARTURE
SAMPLE AIR TRAFFIC CONTROL APPROACH
WASHINGTON METROPLEX STUDY AREA
WASHINGTON, DC METROPLEX

Pre

Post
BOOK TWO
RNAV SID:
INITIAL TRACK
(RWY 01)
BOOCK TWO RNAV SID
NORTH – EAST TRACK
(ALTIMETRES TARGETS
CLIMB RATE)
NOISE EXPOSURE CONTOUR (DNL)

- FAA AEDT Noise Model
- Actual flight tracks (in red)
- Models actual aircraft type, altitudes, operation time
OPTIONS FOR REDUCING NOISE EXPOSURE TO DC COMMUNITIES

• Arrival and/or departure route (altitude) modification
• Arrivals: Optimized Profile Descent (OPD)
• Arrival traffic management: In-trail sequencing – inbound flights
• New and more precise Area Navigation (RNAV) procedures
• Amend descent profiles fix to fix
• Reduce track miles and amend track speed
• Minimize delayed vectoring
COMMUNITY INPUT

• Record major noise events
 ✓ Date, time, location, direction, aircraft

• Noise monitoring at three locations
 ✓ Greater noise impact, diverse communities, quiet locations

• Nighttime noise monitoring in three homes
 ✓ Noise impact, diverse locations, quiet interior (no occupants)

• Noise monitoring at two schools (school day)
 ✓ Noise impact, diverse locations, no occupants
PALO ALTO RESULTS

• Identified new air traffic control procedures to minimize noise
• Showed noise exposure increases with NextGen
• Documented all results
• Community presentation
• Submitted to the FAA for review – Select Committee from local communities
CONCLUSIONS

• Assessments:
 – Published routes
 – Actual procedures
 – Old and new noise monitoring data
 – Noise modeling of existing and recommended procedures

• Recommendations
 – Viable changes in ATC procedures to minimize noise throughout the District
CONTACT INFO

• Mark Adams – mark.adams@dc.gov

• Rama Tangirala – rama.tangirala@dc.gov

• Monitoring and Assessment Branch, Air Quality Division
 – Phone: 202.535.2250
FICON 1992 Re-Affirmation of Schultz Curve

FICON (1992) re-affirmation of Schultz (1978) and DNL was the last in-depth review for the FAA