HAMLIN STREET
STORMWATER RETROFIT PROJECT

PUBLIC STAKEHOLDER CONCEPT DESIGN PUBLIC MEETING

March 9, 2021

CECILIA LANE
Environmental Protection Specialist
Watershed Protection Division
Department of Energy & Environment
cecilia.lane@dc.gov
AGENDA

• Project Area & Background
• Existing Conditions
• Project Objectives
• Restoration Approaches
• Concept Design
• Timeline
• FAQs
• Q&A
PROJECT LOCATION
BACKGROUND
Figure 1.1 Water Balance at a Developed and Underdeveloped Site
(Source: Schueler, 1987)

Surface runoff is minimal in an undeveloped site, but dominates the water balance at a highly impervious site.
PROBLEM OF STORMWATER POLLUTION
A single 1.2 inch storm falling on this area produces about 525 million gallons of stormwater runoff.
DC ’S RESTORATION APPROACHES

CSS

DOEE

DC Water

MS4
EXISTING CONDITIONS

LANGDON PARK

Catch Basins

Stormwater Flows

LANGDON PARK
EXISTING CONDITIONS
EXISTING CONDITIONS - UPPER
PROJECT OBJECTIVES

- Treat maximum amount of stormwater from the site in the most cost effective way
- Create and enhance habitat within Langdon Park
- Minimal impacts to the community
- Development of a community amenity
- Educational opportunities
RESTORATION APPROACHES
Most stormwater practices all work the same way: “they collect stormwater runoff and use or mimic natural processes that result in the infiltration, evapotranspiration or use of stormwater in order to protect water quality and associated aquatic habitat” (EPA).

Slow it down, Spread it Out, Soak it In!
BIO RETENTION
BIO RETENTION: HOW IT WORKS
BIOSWALES
PROJECT CONCEPT
PROJECT CONCEPT

SUMMARY TABLE

<table>
<thead>
<tr>
<th>BMP</th>
<th>Bioretention Version</th>
<th>Section</th>
<th>SWI, CF</th>
<th>Areas, SF</th>
<th>d_{soil}, IN</th>
<th>Storm Chamber</th>
<th>Retention Volume, Provided</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard</td>
<td>Upper Cell</td>
<td>210</td>
<td>930</td>
<td>12</td>
<td>36</td>
<td>36</td>
<td>675</td>
</tr>
<tr>
<td>1</td>
<td>Standard</td>
<td>Lower Cell</td>
<td>1,080</td>
<td>700</td>
<td>12</td>
<td>36</td>
<td>36</td>
<td>1,780</td>
</tr>
<tr>
<td>1</td>
<td>Standard</td>
<td>TOTAL</td>
<td>6,798</td>
<td>9,628</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>3,972</td>
</tr>
<tr>
<td>2</td>
<td>Standard</td>
<td>N/A</td>
<td>2,401</td>
<td>1,401</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>3,888</td>
</tr>
</tbody>
</table>

HORIZONTAL SCALE

0 30 60
PROJECT TIMELINE

- March 2020: contract awarded
- April – December 2020: field assessment (topographic survey, geotechnical investigations etc.), interagency coordination
- January – June 2021: design development
- 3 public meetings:
 - Concept designs on 3/9/2021
 - Semi-final designs (~65%): TBD
 - Construction kickoff meeting (timeline): TBD
FAQs

• How do we find our project sites?
 – Enthusiastic landowners!
 – Funding sources
 – Large areas of untreated impervious cover
 – More impactful locations

• What can I do?
 – RiverSmart Homes
 • Rain Gardens
 • Permeable Pavers
 • Rain Barrels
 • Tree Planting
 • “BayScaping”

https://www.riversmarthomes.org/