

Architect of the Capitol

U.S. Capitol, Room SB-16 Washington, DC 20515 202.228.1793

www.aoc.gov

July 24, 2023

Mr. Joseph Jakuta Department of Energy and Environment Air Quality Division Monitoring and Assessment Branch 1200 First Street, NE, Fifth Floor Washington, DC 20002

Mr. Jakuta:

I appreciate the opportunity to comment on the Department of Energy and Environment's (DOEE) proposed response to the Architect of the Capitol's (AOC) Capitol Power Plant (CPP) Alternative nitrogen oxides (NOx) reasonably available control technology (RACT) submission.

First, I want to reiterate that the AOC and CPP are committed environmental stewards and have proactively taken steps over the past decade to dramatically reduce air emissions and increase energy efficiency. Most notably, CPP has transitioned away from burning coal and instead now utilizes a state-of-the-art cogeneration system to more efficiently produce steam and electricity. CPP is also developing a new utility master plan to improve utility energy services across the Capitol complex in a more efficient, resilient, and environmentally responsible manner. CPP looks forward to working with DOEE on these future improvements.

Enclosed are comments and a revised Alternative NOx RACT submission which incorporates updated emissions and operational limits and a revised cost effectiveness assessment. These limits are responsive to DOEE's regulatory intentions as they provide a more aggressive, enforceable guarantee that lowers the maximum amount of NOx that CPP could potentially emit. Once this reduction in potential emissions is incorporated, an objective cost-benefit analysis clearly demonstrates that add-on NOx controls are not economically effective and therefore are not mandated under the regulation.

If you have any questions or would like to discuss our submission, please do not hesitate to contact me. Thank you for your consideration of our comments and revised submission.

Sincerely,

Potter, Christopher Digitally signed by Potter, Christopher Date: 2023.07.24 11:24:00

Christopher Potter
Director, Utilities and Power Plant Operations
Architect of the Capitol
202.226.3864

Enclosure

Attachment 1 – Technical Comments

Comment #1: CPP is amending the CPP Alternative NOx RACT submission to take limitations which clearly define allowable emissions per boiler so that a proper cost effectiveness analysis can be completed on Boilers 3-7.

CPP performed a cost effectiveness analysis using <u>actual emissions</u> in our Alternative RACT submission. DOEE evaluated our submission based on a cost effectiveness analysis using unit specific <u>allowable emissions</u>.

While both approaches can be valid, CPP's amended proposal to lower potential NOx emission maximums obviates any need to adjudicate which is most appropriate here. Updating emissions and operating limits to clearly define allowable NO_x limitations on Boilers 3 through 7 yields an accurate allowable emissions rate for each unit. With these limitations, a more robust cost effectiveness analysis can be completed, which reaches the same practical conclusion regardless of whether allowable or actual emissions are used.

<u>Comment #1a: CPP is updating Alternative RACT Limitations to clearly establish allowable</u> <u>emissions limits on each boiler for Boilers 3-7</u>

CPP is updating the following limitations to be incorporated as part of our Alternative RACT submission. These limitations will clearly establish allowable NO_x emissions rates on a tons per year basis for Boilers 3 through 7:

- For Boiler 3:
 - Annual fuel input limitations, in the form of a 12-month rolling total limit of 1,069,730 gallons of fuel oil and 748.8 million standard cubic feet (MMscf) of natural gas. These limits are already in place, see Condition III.b of Permit No. 6576.
 - o A NO_x emission rate limit of 0.15 lb/MMBtu as measured on a 30-day rolling average from the combined West Stack. This would be more stringent than the current 0.2 lb/MMBtu limit.
- For Boilers 4-7 (each boiler will have the same limitations as the units are of similar design):
 - Annual fuel input limitations, in the form of a 12-month rolling total limit of 408,000 million British thermal units (MMBtu) per boiler combined between heat input from natural gas and #2 fuel oil.
 - A NO_x emission rate limit of 0.15 lb/MMBtu as measured on a 30-day rolling average from the combined West Stack. This would be more stringent than the current 0.25 lb/MMBtu limit.

By accepting these limitations, the allowable emissions rates on an annual basis will be as follows: 68.3 tons per year (tpy) for Boiler 3 and 30.6 tpy each for Boilers 4 through 7.

This information has been included in the enclosed revised Alternative RACT submission.

<u>Comment #1b: Based on these Alternative RACT Limitations and calculated emission rates, the cost effectiveness assessment should be corrected and updated.</u>

CPP has recomputed the RACT cost effectiveness analysis using the unit specific NO_x allowable emission rates listed above. In our updated analysis, we considered and updated the following:

- The estimated cost to install the control technologies did not change, however the cost values were updated to account for higher interest rates and shorter service lives based on current conditions. Specifically, CPP has updated the analyses to use a 15-year equipment life and a 5.5 percent interest rate. These values are justified for CPP based on current conditions and were acceptable to DOEE as shown within other approved Alternative RACT Plans in DOEE's proposed rulemaking documents.
- Using the updated annualized control cost estimates for LNB+FGR (the combination of technologies likely necessary to assure compliance with the presumptive RACT level) and the proposed unit-specific allowable emission rates, Table 1 provides an updated cost effectiveness estimate for both reductions in terms of actual emissions and allowable emissions reduced.

Table 1. Cost Effectiveness Summary

Emissions Scenario	Boiler 3 Cost Effectiveness	Boiler 4-7 Cost Effectiveness
	(\$/ton removed)	(\$/ton removed)
Actual Emissions	\$47,732	\$30,133 to \$57,683
Updated Allowable Emissions	\$8,516	\$13,461

Comment #1c: The Cost Effectiveness Analysis with defined NOx allowable emissions limits for each boiler demonstrate that LNB+FGR is not cost effective and thus not RACT.

As demonstrated in Table 1 above, the cost effectiveness evaluations show that add-on NOx controls do not meet RACT given their excessive costs. We have also provided proposed permit language for DOEE to consider when incorporating these limits in a final permit or rule in the revised Alternate RACT plan.

Comment #2: Request for additional information regarding DOEE cost effectiveness assumptions to confirm cost effectiveness calculations and consistency with existing limitations.

- What is the basis for the listed 7,657 hours per year of operation? This hourly emission limitation does not directly appear in any existing permits for these boilers and would result in exceeding existing fuel usage limitations for Boiler 3.
- How did DOEE's estimated allowable emission rates incorporate the PAL limitation? The combined total appears to exceed the PAL.

- What is the justification for DOEE's use of differing allowable emission rates for Boilers 4 through 7? These units are of similar design so the allowable emission rates should be the same, however they are not the same in DOEE's supporting records.
- Were fuel oil emissions included in the calculation of allowable or controlled emissions?

Comment #3: The Final Rule should include a Compliance Extension

For units subject to an alternative RACT, the final rule will need to accommodate a compliance extension to allow sources adequate time to comply. CPP commented on this aspect of the presumptive RACT rule when it was originally proposed however the issue was not addressed in the final rule.

<u>Attachment 2 – Revised Alternative NOx RACT Submission</u>

Included in electronic submission only

UPDATED NO_X RACT ANALYSIS

Revision to Report Submitted March 1, 2022

Architect of the Capitol / U.S. Capitol Power Plant

Prepared By:

TRINITY CONSULTANTS

5320 Spectrum Drive Suite A Frederick, MD 21703 240.379.7490

Updated July 24, 2023

TABLE OF CONTENTS

1.	INTE	RODUC	TION	1-1
	1.1	Facilit	ty Description	1-1
	1.2		atory Review	
	1.3	RACT	Requirements	1-3
			Exempt Units	
			Presumptive RACT	
			Case-by-Case RACT Determination	
2.	RAC	T ANAL	YSIS	2-1
	2.1	Top-D	Oown Methodology	2-1
			Step 1: Identify All Control Technologies	
		2.1.2	Step 2: Eliminate Technically Infeasible Options	2-1
		2.1.3	Step 3: Rank Remaining Control Technologies by Control Effectiveness	2-1
		2.1.4	Step 4: Evaluate Most Effective Controls and Document Results	2-1
			Step 5: Select RACT	
	2.2	NO _X R	RACT Assessment for Boiler 3 (CU-3)	2-3
		2.2.1	Step 1: Identify All Control Technologies for NOx	2-3
		2.2.2	Step 2: Eliminate Technically Infeasible Options for NOx Control	2-4
		2.2.3	Step 3: Rank Remaining Control Technologies by Control Effectiveness	2-6
			Step 4: Evaluate Most Effective Controls and Document Results	
			Step 5: Select RACT	
	2.3	NO _X R	RACT Assessment for Boilers 4-7 (CU 4-7)	2-7
		2.3.1	Step 1: Identify All Control Technologies for NOx	2-7
		2.3.2	Step 2: Eliminate Technically Infeasible Options for NOx Control	2-7
		2.3.3	Step 3: Rank Remaining Control Technologies by Control Effectiveness	2-9
		2.3.4	Step 4: Evaluate Most Effective Controls and Document Results	2-9
		2.3.5	Step 5: Select RACT	2-9
	2.4	Propo	osed RACT Emission Limit for West Stack	. 2-10
			Suggested Additional Permit Conditions	
		2.4.2	Compliance Timeline	2-10

APPENDIX A. DETAILED COST CALCULATIONS – ALLOWABLE EMISSIONS

APPENDIX B. BOILER 3 PERFORMANCE TEST DATA

APPENDIX C. UPL CALCULATIONS

APPENDIX D. SCR AND SNCR COST ANALYSIS

APPENDIX E. QUOTE FOR BURNER REPLACEMENTS

APPENDIX F. DETAILED COST CALCULATIONS – ACTUAL EMISSIONS

LIST OF TABLES

Table 1-1. Boiler and Combustion Turbine Specifications	1-1
Table 1-2. Presumptive NO _x RACT Emission Limits	1-2
Table 2-1. Potentially Available NO _x Control Technologies for Boiler 3	2-3
Table 2-2. Ranking of Remaining Control Technologies for Boiler 3	2-6
Table 2-3. Potentially Available NO _X Control Technologies for Boilers 4-7	2-7
Table 2-4. Ranking of Remaining Control Technologies for Boilers 4-7	2-9

The U.S. Capitol Power Plant (CPP) provides heating and cooling to 23 buildings in the Capitol Complex including the House and Senate office buildings, the U.S. Supreme Court, the U.S. Capitol Building, and the Library of Congress. Additionally, the CPP provides heating and cooling to the U.S. Government Printing Office, Union Station, and the Postal Square Building. Several of the CPP's emission units are subject to the District of Columbia's Reasonably Available Control Technology (RACT) regulations for nitrogen oxides (NOx). CPP submitted an alternative RACT plan on March 1, 2022 which detailed RACT compliance for applicable emission units. CPP is now submitting this updated alternative RACT plan as a revision to the 2022 submission. CPP is submitting a fully updated plan to avoid any confusion with the original submission and this revision replaces all portions of the original plan.

1.1 Facility Description

The CPP's operations include five (5) boilers that provide heating to Capitol Hill. Boiler 3 (CU-3) is rated at 203 million British thermal units per hour (MMBtu/hr). The four remaining boilers (CU-4 through CU-7) are each rated 60 MMBtu/hr. Boilers 3 through 7 exhaust to the West Stack. Boilers 3 through 7 are equipped with low NO_X burner technology. CPP also has Chapter 2 permits allowing a temporary boiler rated at up to 99 MMBtu/hr to be brought onsite for up to 180 days at a time and operation of a Cogeneration Plant consisting of a 7.5-megawatt (MW) combustion turbine equipped with a 71.9 MMBtu/hr heat recovery steam generator (HRSG). Table 1-1 provides details of the boilers and cogeneration equipment at the CPP.

Source	Installation Year	Capacity	Fuel
Boiler 3 (CU-3)	1952	203 MMBtu/hr	Natural Gas Fuel Oil
Boiler 4 (CU-4)	1963	60 MMBtu/hr	Natural Gas Fuel Oil
Boiler 5 (CU-5)	1963	60 MMBtu/hr	Natural Gas Fuel Oil
Boiler 6 (CU-6)	1963	60 MMBtu/hr	Natural Gas Fuel Oil
Boiler 7 (CU-7)	1963	60 MMBtu/hr	Natural Gas Fuel Oil
Combustion Turbine and HRSG (CT-1 and HRSG-1)		7.5 MW CT 71.9 MMBtu/hr HRSG	Natural Gas Fuel Oil
Temporary Boiler	Brought onsite as needed up to 180 days at a time	Up to 99 MMBtu/hr	Natural Gas Fuel Oil

Table 1-1. Boiler and Combustion Turbine Specifications

Other NO_X emission sources at the CPP include the following:

- ▶ One (1) emergency generator; and
- ▶ One (1) emergency fire pump.

1.2 Regulatory Review

On November 26, 2021, the Department of Energy and Environment (DOEE) finalized amendments to the District of Columbia Municipal Regulation (DCMR) Title 20 Chapter 8, Air Quality – Asbestos, Sulfur, Nitrogen Oxides, and Lead (20 DCMR 8) for facilities required to meet RACT standards for NOx. Presumptive NOx limits as established in the finalized regulation under 20 DCMR 805.5(e) and 20 DCMR 805.4 for equipment types operated by the CPP are summarized in Table 1-2.

Table 1-2. Presumptive NO_x RACT Emission Limits

Emission Unit Type	CPP Emission Unit(s)	Emission Unit Size	Presumptive RACT Emission Limit
Combustion Turbines Burning Liquid Fuels	CT-1 and HRSG-1	>50 MMBtu/hr	42 parts per million by volume, dry (ppmvd)
Non-Coal Fired Units	CU-3	≥100 MMBtu/hr	0.12 lb/MMBtu when burning oil or a combination of fuel oil and natural gas 0.05 lb/MMBtu when burning natural gas only
	CU-4 to CU-7 and Temporary Boiler	≥25 and <100 MMBtu/hr	0.09 lb/MMBtu when burning fuel oil ¹ 0.05 lb/MMBtu when burning natural gas only

If an existing unit is unable to meet these limits, the facility was required to submit, by no later than March 1, 2022, an alternative RACT plan demonstrating that the presumptive limits are not technically or economically feasible. Per 20 DCMR 805.2(c), the components of the alternative RACT application include:

- 1. Demonstration that it is not technically or economically feasible for the emission unit to comply with the new emission limitation.
- 2. Provide a study of the capabiltiy of the emission unit to apply the following NO_x control options and their expected effectiveness:
 - a. Low NO_X Burners (LNB);
 - b. Overfire Air (OFA);
 - c. Flue gas Recirculation (FGR);
 - d. Burners Out Of Services (BOOS);
 - e. Selective Non-Catalytic Reduction (SNCR); and,
 - f. Selective Catalytic Reduction (SCR).
- 3. Determine an emissions limitation reflecting the application of RACT.

 $^{^{1}}$ NO_X emission limit for fuel oil burning is for units that have not taken limits to restrict fuel oil usage to periods of gas curtailment, testing and maintenance. Recognizing the CPP's mission and the criticality for maintaining the continuity of government, the CPP has not taken limits to restrict fuel oil usage on any boilers.

CPP submitted an alternative RACT plan which met the requirements of 20 DCMR 805.2(b) on March 1, 2022. DOEE has recently proposed its determination on CPP's Alternate NO_x Plan. To be complete in our comments on the proposed determination and our comments on the proposal, CPP is submitting this updated plan as a revision to the original submission to revise proposed limitations and provide further technical clarifications based on feedback from DOEE on the original plan along with our comments on the proposed rule.

1.3 RACT Requirements

The following sections outline the alternative RACT plan for the applicable sources at the CPP.

1.3.1 Exempt Units

Emergency standby engines are not subject to NO_X RACT emission limits per 20 DCMR 805.1(c)(5). Therefore, the emergency generator and emergency fire pump are exempt from RACT requirements and these units are not discussed further in this alternative RACT plan.

1.3.2 Presumptive RACT

Sources can choose to comply with presumptive RACT limits set forth in 20 DCMR 805.5(e) and 20 DCMR 805.4, which are summarized in Table 1-2. CPP will comply with the presumptive RACT limits for the following sources:

- ▶ Combustion Turbine and HRSG (CT-1 and HRSG-1); and
- ► Temporary Boiler.

The presumptive RACT limits became effective on January 1, 2023.

1.3.3 Case-by-Case RACT Determination

For sources that are unable to meet presumptive RACT limits, facilities must propose an alternative RACT emission limitation (i.e., a "case-by-case RACT limit") and apply for a case-by-case RACT from the DOEE. CPP proposes to comply with alternative RACT emission limits for Boilers 3 through 7 (CU-3 through CU-7).

Section 2 of this application includes the demonstration of the technical and economic feasibiltiy of the NO_X control options and the recommended RACT emissions and operational limitations for affected units at the CPP.

As discussed above, several sources at CPP are subject to a case-by-case RACT determination. This section provides details on the methodology used to determine the proposed RACT.

2.1 Top-Down Methodology

Case-by-case RACT determinations are traditionally based on a top-down methodology. Presented below are the five (5) basic steps of the top-down RACT review.

2.1.1 Step 1: Identify All Control Technologies

Under Step 1, all available control technologies are identified for each emission unit in question. Per 20 DCMR 805.2, the following NO_x control options must be evaluated:

- ► LNB;
- OFA;
- ► FGR;
- ► BOOS;
- ▶ SNCR; and
- SCR.

2.1.2 Step 2: Eliminate Technically Infeasible Options

After control technologies are identified under Step 1, an analysis is conducted to eliminate technically infeasible options. A control option is eliminated from consideration if there are process-specific conditions that prohibit the implementation of the control technology.

2.1.3 Step 3: Rank Remaining Control Technologies by Control Effectiveness

In Step 3, remaining control technology options are ranked based on their control effectiveness, from highest to lowest control efficiency. This list must identify, at a minimum, the baseline emissions of NO_X before implementation of each control option, the estimated reduction potential or control efficiency of each control option, and the estimated emissions after the application of each control option and the economic impacts.

2.1.4 Step 4: Evaluate Most Effective Controls and Document Results

Beginning with the highest-ranked control technology option from Step 3, detailed economic, energy, and environmental impact evaluations are performed in Step 4. If a control option is determined to be economically feasible without adverse energy or environmental impacts, it is not necessary to evaluate the remaining options with lower control efficiencies.

2.1.4.1 Cost Analysis Methodology: Capital Costs

The economic evaluation centers on the cost effectiveness of the control option. Costs of installing and operating control technologies are estimated and annualized following the methodologies outlined in the U.S. Environmental Protection Agency's (EPA's) Office of Air Quality Planning and Standards (OAQPS)

Control Cost Manual (CCM) and other industry resources. Based on the CCM, capital costs are annualized over a 15-year lifespan of the control equipment.²

2.1.4.2 Cost Analysis Methodology: Emissions

Annualized costs are then converted to a dollar per ton of pollutant removed cost effectiveness value to determine whether a control technology is economically feasible. In the original alternative RACT analysis, CPP utilized annual average actual emissions from 2020 and 2021 for each boiler. The CPP, as part of its long-term strategic plan, took an important initial step in modernizing fuel combustion operations with the Cogeneration project. This project resulted in CPP voluntarily proposing and accepting an aggressive lower potential sitewide NO_X limit of 196.7 tons per year (tpy) via a sitewide NO_X PAL permit.³ The permit action reduced sitewide potential emissions from CPP by approximately 81%.

It should also be noted that the base steam load of the AOC campus is served by the Cogeneration System which meets the presumptive RACT limits. Boilers 3 through 7, which are equipped with low NO_X burners, are used to meet steam demands above the Cogeneration Plant capacity and to provide redundancy if Cogeneration Plant operation is interrupted. Frequently, the five (5) boilers are operating in low-fire while the combustion turbine is operating. The annual load factor of each boiler is less than 15%. Additionally, the five (5) boilers have been in operation for 60 years. By part loading multiple boilers, the furnace exit temperatures are reduced which contributes to the extended longevity of the units and reduces NO_X formation.

DOEE clarified in the June 23, 2023 proposal that the District would be basing alternative RACT cost effectiveness on allowable emissions. CPP has updated the analyses presented in this updated report to use allowable emissions that align with our comments on DOEE's proposed determination. However, cost effectiveness calculations using actual emissions have been included as Appendix F for comparison purposes. These calculations demonstrate that the cost effectiveness for actual NO_X that would not be emitted to the atmosphere is significantly higher than those based on allowable emissions, further demonstrating the cost ineffectiveness of add-on controls for these boilers.

2.1.4.3 Evaluating Economic Feasibility

Cost effectiveness values, in dollars per ton of NO_X removed, are then reviewed to determine if each control technology is cost effective. DOEE has not established a clear threshold to define acceptable cost effectiveness for RACT. However, in the June 23, 2023 proposal, DOEE references the thresholds for five (5) other states with an average cost effectiveness threshold of \$7,150/ton.⁴ CPP has utilized this threshold to determine cost effectiveness in this updated analysis. If the control technology with the highest control

² CPP's original alternative RACT plan used a 20-year lifespan of control equipment and noted "that this is conservative for CPP's alternate RACT analysis as the boilers are likely to be replaced during this timeframe. According to the CPP's latest Master Utility Plan, these boilers are anticipated to be replaced in five to ten years which would further increase annualized costs as any control technology will only be used for the remainder of each boiler's operating life." In DOEE's June 23, 2023 proposal, DOEE has proposed to align our cost efficectiveness calculations with the CPP Master Utility Plan objectives and such that it is also consistent with the evaluation of similar alternative NO_x RACT cost effectiveness analysis under review by DOEE. For example, Georgetown University used a 15-year lifespan of control equipment citing "A longer equipment life is unreasonable given boiler age." Given the similar situation, CPP has likewise determined use of 15 years is appropriate and updated the prior conservative assumption.

 $^{^{3}}$ Permit No. 6577 issued by DOEE with an effective date of June 6, 2013. The CPP also operates under a PAL of 248.1 tpy of NO_X in Permit No. EPA-R3-PAL-001 issued by the U.S. EPA with an effective date of January 23, 2013.

⁴ Table 3 of DOEE's June 23, 2023 Alternative NO_X RACT proposal.

efficiency is not cost effective, it is eliminated and the next highest ranked technology from step 3 is evaluated for cost until a cost-effective technology is found or all technologies are eliminated.

2.1.5 Step 5: Select RACT

Using the result of the prior steps to determine the appropriate control technology, the final step is to determine the emission limit that represents the RACT limit.

2.2 NO_X RACT Assessment for Boiler 3 (CU-3)

Boiler 3 is a 203 MMBtu/hr Wickes boiler that is permitted to operate on either fuel oil or natural gas. Boiler 3 has been in service for over 70 years and is a converted stoker fired coal boiler. Because of the furnace geometry, four (4) burners in a single row were installed to obtain the unit steam output. All four (4) burners utilize low NO_X burner technology. The boiler design includes a flue gas feedwater economizer. Emissions from Boiler 3 are combined with emissions from Boilers 4 through 7 before venting to the atmosphere from the West Stack.

There are three (3) types of chemical kinetic processes that form NO_X emissions from boilers referred to as: 1) thermal NO_X , 2) fuel NO_X , and 3) prompt NO_X . Thermal NO_X is generated by the oxidation of molecular nitrogen (N_2) in the combustion air as it passes through the flame in the boiler. This reaction requires high temperatures, hence the name thermal NO_X . The formation of nitrogen oxide (NO) from oxygen (N_X) in air at high temperatures is described by the well-known Zeldovich mechanism. Fuel NO_X is the result of the conversion of nitrogen compounds contained in fuels to NO_X during fuel combustion. Prompt NO_X is formed by a combination of reactions between nitrogen, oxygen, and hydrocarbon radicals and is mostly significant in low-temperature, fuel-rich conditions where residence times are short.

2.2.1 Step 1: Identify All Control Technologies for NO_X

Step 1 in a top-down analysis is to identify all available control technologies. The evaluation of potential controls for NO_X emissions includes both an investigation of end-of-pipe (post-combustion methods) which control all forms of NO_X and combustion modifications/optimization that reduce the formation of thermal NO_X. Table 2-1 contains a list of the various technologies that have been evaluated for the control of NO_X from Boiler 3 per 20 DCMR 805.2(c)(2) and each is further discussed below.

Table 2-1. Potentially Available NO_X Control Technologies for Boiler 3

Potentially Available NO _X Control Technologies
SNCR
SCR
OFA
BOOS
LNB
FGR

2.2.1.1 SNCR

SNCR is a post-combustion emissions control technology which involves injection of an ammonia-type reagent (typically ammonia or urea) into the furnace. The ammonia (NH₃) or a urea solution is injected into

the gas stream to chemically reduce NO_X to form N_2 and water. High temperatures, optimally between 1,600 to 2,000 degrees Fahrenheit (°F) for ammonia injection and 1,650 to 2,100 °F for urea injection, promote the reaction via the following equation: ⁵

$$NH_3 + NO + \frac{1}{4}O_2 \rightarrow N_2 + \frac{3}{4}H_2O$$

2.2.1.2 SCR

SCR is an exhaust gas treatment process in which NH_3 is injected into the exhaust gas upstream of a catalyst bed. On the catalyst surface, NH_3 , NO, and NO_2 react to form water and N_2 in the same reaction as for SNCR technology. The presence of the catalyst promotes this reaction at a much lower temperature than that required for SNCR, typically between 480 and 800 °F.⁶

2.2.1.3 OFA

OFA is a type of staged combustion control, wherein the amount of combustion air introduced into the burner zone is limited. Additional combustion air is introduced after the burner zone through OFA ports. By spreading out the combustion, oxygen concentrations are limited in the lower portions of the boiler, thereby limiting the oxidation of fuel-bound nitrogen and the formation of fuel NO_x.

2.2.1.4 BOOS

BOOS is a staged combustion technique which involves introducing additional natural gas at lower zones (fuel-rich zone) and additional air through registers of non-operating burners at higher zones to complete combustion. Note that by taking burners out of service the overall capacity of the emission unit is reduced.

2.2.1.5 LNBs

The principle of all LNBs is the same: stepwise or staged combustion and localized exhaust gas recirculation at the flame. LNBs are designed to control fuel and air mixing to create larger and more branched flames. Peak flame temperatures are reduced, resulting in less NO_x formation. For boilers like those at CPP, a LNB is commonly combined with FGR technology to obtain a vendor guarantee that meets enforceable limitations.

2.2.1.6 FGR

With this technology, cooled flue gas is recirculated back in with the combustion air and thus reduces the combustion temperature by lowering the oxygen content of the mix and absorbing heat from the flame. The lower temperature lowers the amount of thermal NO_X that is created. For boilers like those at CPP, FGR is commonly combined with LNB technology to obtain a vendor quarantee that meets enforceable limitations.

2.2.2 Step 2: Eliminate Technically Infeasible Options for NO_X Control

Step 2 in a RACT top-down analysis is to eliminate the control options identified in Step 1 which are technically infeasible. The remaining technologies are then carried into Step 3.

⁵ Air Pollution Control Cost Manual, Section 4, Chapter 1, Selective Non-Catalytic Reduction, NO_X Control, April 2019, Pages 1-9 to 1-11.

⁶ Air Pollution Control Cost Manual, Section 4, Chapter 2, Selective Catalytic Reduction, NO_x Control, June 2019, Section 2.2.2.

2.2.2.1 SNCR

SNCR requires a high but very specific temperature range (generally between 1,600 and 2,100 °F) and residence time at this temperature to be effective. Boiler 3 operates with an exhaust temperature below 300 °F.

Due to the low exhaust temperature, SNCR is a technically infeasible control technology and therefore is not RACT. Further evaluation of the technology is not required. However, in anticipation of questions from DOEE, CPP provided a cost effectiveness evaluation in the original alternative RACT plan to demonstrate that SNCR is both technically and economically infeasible for Boiler 3. DOEE's June 23, 2023 proposal accepted that SNCR is not technically feasible. For completeness, the cost effectiveness calculations are provided again in Appendix D but have not been updated.

2.2.2.2 SCR

The SCR process is temperature sensitive. Any exhaust gas temperature fluctuation reduces removal efficiency and upsets the NH_3/NO_X molar ratio. SCR also requires an optimum temperature range of 480 to 800 °F and fairly constant temperatures, or NO_X removal efficiency will decrease.⁷ As stated above, Boiler 3 operates with an exhaust temperature below 300 °F.

Therefore, SCR would be ineffective at controlling NO_x emissions and is not RACT. Further evaluation of the technology is not required. However, in anticipation of questions from DOEE, CPP provided a cost effectiveness evaluation in the original alternative RACT plan to demonstrate that SCR is both technically and economically infeasible for Boiler 3. DOEE's June 23, 2023 proposal accepted that SCR is not technically feasible. For completeness, the cost effectiveness calculations are provided again in Appendix D but have not been updated.

2.2.2.3 OFA

Installing an overfire air system for NO_X removal is not technically feasible for Boiler 3. Due to the capacity of the boiler, the fuels utilized, and the existing low NO_X burners, no additional NO_X reduction is expected with this technology. Additionally, the physical configuration and age of the boiler make installation of OFA technically infeasible, and further evaluation of the technology is not required.

2.2.2.4 BOOS

Boiler 3 is a multiple burner unit with four (4) burners. As such, BOOS is evaluated for feasibility. Based on recent combustion analysis data for Boiler 3, there is no improvement in NO_X formation whether the burners are operating at low or high loading. Boiler 3 currently operates near 50% of boiler design capacity, with all four (4) burners operating at roughly 50% capacity. BOOS at 50% design capacity could potentially have two (2) burners at 100% capacity, but BOOS applied to CPP would require three (3) burners at 66% capacity to meet the reliable steam output criteria of the plant [e.g., even with the loss of one (1) of the three (3) burners, the remaining two (2) burners could satisfy the output]. Additionally, the four (4) burners are in a flat configuration which is not beneficial for BOOS. The implementation of BOOS on Boiler 3 is not considered an applicable RACT NO_X improvement method due to the demonstrated lack of NO_X reduction that would result from the staging of linear configured burners as well as the fact that the existing burners are low NO_X burners. A summary of the most recent combustion analysis data is provided in Appendix B, along with a chart of NO_X , CO, and excess air changes with changes in boiler output.

⁷ Air Pollution Control Cost Manual, Section 4, Chapter 2, Selective Catalytic Reduction, NOX Control, June 2019, Section 2.2.2.

For these reasons, BOOS is not considered to be technically feasible for controlling NO_X emissions and is not RACT. Further evaluation of the technology is not required.

2.2.2.5 LNBs

Boiler 3 is equipped with LNB technology. Upon further evaluation with Affiliated Engineers, Inc. (AEI), the use of newer LNB technology to meet the presumptive RACT standards is technically infeasible without the addition of FGR.⁸ The inability to obtain vendor guarantees at RACT levels by only applying LNB technology is uncertain at best. Therefore, in order to achieve the required NO_X levels, FGR would be required. As such, only LNB with FGR is further evaluated. This determination is consistent with the two (2) other alternative RACT plans that DOEE has proposed to accept for similarly aged boilers.

2.2.2.6 FGR

FGR is a technically feasible option for lowering NO_X emissions from Boiler 3. Since FGR would require replacement of the burners, more advanced LNB technology would be installed at the same time. The existing low NO_X burners cannot be utilized with FGR. Replacing the burners with newer LNBs equipped with FGR is considered technically feasible and is therefore considered further in this analysis.

2.2.3 Step 3: Rank Remaining Control Technologies by Control Effectiveness

Step 3 in the top-down RACT analysis procedure is to rank remaining control technologies by control effectiveness. Table 2-2 compares the relative effectiveness of the technically feasible control technologies.

Table 2-2. Ranking of Remaining Control Technologies for Boiler 3

Pollutant	Control Technology	Estimated NO _x Emission Factor
NOx	LNB + FGR	0.05 lb/MMBtu on gas 0.12 lb/MMBtu on oil

2.2.4 Step 4: Evaluate Most Effective Controls and Document Results

In Step 4, the remaining control technologies, in order from most stringent control to least, are evaluated on the basis of economic, energy, and environmental considerations.

2.2.4.1 LNBs with FGR

Replacing all existing LNBs with new LNBs with FGR is the only technically feasible option for meeting the presumptive NO_X emission limits.

Based on the presumptive NO_X RACT limits and allowable emissions, the cost effectiveness for Boiler 3 is estimated to be \$8,516 per ton of NO_X removed. Accordingly, installation of LNBs with FGR on Boiler 3 is not considered an economically feasible option.

⁸ July 6, 2023 email from Jack Ross, AEI, to Susan Barnes, Trinity Consultants.

Capital costs for this analysis were based on a site-specific engineering analysis and information from potential vendors (refer to Appendix E). The methodology and assumptions used to determine this cost effectiveness are presented in Appendix A.

2.2.5 Step 5: Select RACT

As RACT, CPP will continue to utilize the existing low NO_x burners and to employ good combustion practices, proper boiler operation, and minimization of excess air. In addition, CPP will continue to comply with the existing fuel limitations for Boiler 3 of 748.80 million standard cubic feet (MMscf) of natural gas per year and 1,069,730 gallons of fuel oil per year. PPP is also proposing to lower the emission limit for NO_x from the current limit of 0.2 lb/MMBtu to 0.15 lb/MMBtu. Due to the combined stack configuration, CPP is proposing a single RACT limit for the West Stack of 0.15 lb/MMBtu. Refer to Section 2.4 for details of this proposed RACT emission limit.

2.3 NO_X RACT Assessment for Boilers 4-7 (CU 4-7)

Boilers 4 through 7 are each 60 MMBtu/hr packaged watertube boilers that are permitted to operate on either fuel oil or natural gas. Each boiler is equipped with a single low NO_X burner. Each has been in service for almost 60 years. Emissions from Boilers 4 through 7 are combined with emissions from Boiler 3 before venting to the atmosphere from the West Stack. Mechanisms for NO_X production in Boilers 4 to 7 are the same as those in Boiler 3, refer to Section 2.2 for a detailed description.

2.3.1 Step 1: Identify All Control Technologies for NO_X

Step 1 in a top-down analysis is to identify all available control technologies. The evaluation of potential controls for NO_X emissions includes both an investigation of end-of-pipe (post-combustion methods) and combustion modifications/optimization that reduce the formation of thermal NO_X . Table 2-3 contains a list of the various technologies that have been evaluated for the control of NO_X from Boilers 4 through 7 per 20 DCMR 805.2(c)(2). Refer to Section 2.2.1 for descriptions of each control technology.

Table 2-3. Potentially Available NO_x Control Technologies for Boilers 4-7

Potentially Available NO _X Control Technologies
SNCR
SCR
OFA
BOOS
LNB
FGR

2.3.2 Step 2: Eliminate Technically Infeasible Options for NO_X Control

Step 2 in a RACT top-down analysis is to eliminate the control options identified in Step 1 which are technically infeasible. The remaining technologies are then carried into Step 3.

⁹ Permit No. 6576, Condition III.b

2.3.2.1 SNCR

SNCR requires a high but very specific temperature range (generally between 1,600 and 2,100 °F) and residence time at this temperature to be effective. Boilers 4 through 7 typically operate with exhaust temperatures of 300 to 600 °F based on available stack testing data.

Due to the low exhaust temperature, SNCR is considered a technically infeasible control technology and therefore is not RACT. Therefore, further evaluation of the technology is not required. However, in anticipation of questions from DOEE, CPP provided a cost effectiveness evaluation in the original alternative RACT plan to demonstrate that SNCR is both technically and economically infeasible for Boilers 4 through 7. DOEE's June 23, 2023 proposal accepted that SNCR is not technically feasible. For completeness, the cost effectiveness calculations are provided again in Appendix D but have not been updated.

2.3.2.2 SCR

The SCR process is temperature sensitive. Any exhaust gas temperature fluctuation reduces removal efficiency and upsets the NH $_3$ /NO $_X$ molar ratio. SCR also requires an optimum temperature range of 480 to 800 °F and fairly constant temperatures, or NO $_X$ removal efficiency will decrease. ¹⁰ As stated above, Boilers 4 through 7 typically operate with exhaust temperatures of 300 to 600 °F based on available stack testing data.

Given this wide range of temperatures which are mostly below the optimum operating range of SCR, SCR is considered technically infeasible for Boilers 4 through 7 and is not RACT. Therefore, further evaluation of the technology is not required. However, in anticipation of questions from DOEE, CPP provided a cost effectiveness evaluation in the original alternative RACT plan to demonstrate that SCR is both technically and economically infeasible for Boilers 4 through 7. DOEE's June 23, 2023 proposal accepted that SCR is not technically feasible. For completeness, the cost effectiveness calculations are provided again in Appendix D but have not been updated.

2.3.2.3 OFA

Installing an overfire air system for NO_x removal is not technically feasible for Boilers 4 through 7. Due to the capacity of the boilers, the fuels utilized, and the existing low NO_x burners, no additional NO_x reduction is expected with this technology. Additionally, the physical configuration and age of the boilers make installation of OFA technically infeasible, and further evaluation of the technology is not required.

2.3.2.4 BOOS

Boilers 4 through 7 are each configured with a single burner, meaning it is impossible to operate these boilers by taking a burner out of service. Therefore, BOOS is not technically feasible for controlling NO_X emissions and is not RACT. Further evaluation of the technology is not required.

2.3.2.5 LNBs

Boilers 4 through 7 are equipped with LNB technology. Upon further evaluation with AEI, the use of newer LNB technology to meet the presumptive RACT standards is technically infeasible without adding FGR. ¹¹ In

¹⁰ Air Pollution Control Cost Manual, Section 4, Chapter 2, Selective Catalytic Reduction, NO_x Control, EPA/452/B-02-001, Page 2-9.

¹¹ July 6, 2023 email from Jack Ross, AEI, to Susan Barnes, Trinity Consultants.

order to achieve the required NO_X levels, FGR would be required. As such, only LNB with FGR is further evaluated. This determination is consistent with the two (2) other alternative RACT plans that DOEE has proposed to accept for similarly aged boilers.

2.3.2.6 FGR

FGR is a technically feasible option for lowering NO_X emissions from Boilers 4 through 7. Since FGR would require replacement of the burners, more advanced LNB technology would be installed at the same time. The existing low NO_X burners cannot be utilized with FGR. Replacing the burners with newer LNBs equipped with FGR is considered technically feasible and is therefore considered further in this analysis.

2.3.3 Step 3: Rank Remaining Control Technologies by Control Effectiveness

Step 3 in the top-down RACT analysis procedure is to rank remaining control technologies by control effectiveness. Table 2-4 compares the relative effectiveness of the technically feasible control technologies.

Table 2-4. Ranking of Remaining Control Technologies for Boilers 4-7

Pollutant	Control Technology	Estimated NO _X Emission Factor
NO _X	LNB + FGR	0.05 lb/MMBtu on gas
		0.09 lb/MMBtu on oil

2.3.4 Step 4: Evaluate Most Effective Controls and Document Results

In Step 4, the remaining control technologies, in order from most stringent control to least, are evaluated on the basis of economic, energy, and environmental considerations.

2.3.4.1 LNBs with FGR

Replacing the existing LNBs with modern LNBs with FGR is the only technically feasible option for meeting the presumptive NO_X emission limits.

Based on the presumptive NO_x RACT limits and allowable emissions, the cost effectiveness of LNBs with FGR for Boilers 4 through 7 is estimated to be \$13,461 per ton of NO_x removed. Accordingly, installing modern LNBs with FGR on Boilers 4 through 7 is not a cost-effective option under RACT requirements.

Capital costs for this analysis were based on a site-specific engineering analysis and information from potential vendors (refer to Appendix E). The methodology and assumptions used to determine this cost effectiveness are presented in Appendix A.

2.3.5 Step 5: Select RACT

As RACT, CPP will continue to utilize the existing low NO_x burners and to employ good combustion practices, proper boiler operation, and minimization of excess air. In addition, CPP is proposing a fuel usage limit of 408,000 MMBtu per year for each boiler. Boilers 4 through 7 are capable of burning either natural gas or fuel oil and currently have no restrictions on either fuel. In addition, CPP is proposing a NO_x limit that will be independent of the fuel being used. As such, CPP is proposing a heat input limit in the form of MMBtu per year rather than proposing a traditional fuel usage limit. This will simplify monitoring requirements for demonstrating compliance with the proposed limits while maintaining the fuel flexibility needed to ensure

CPP continues to be able to meet steam demand regardless of fuel availability. If DOEE has concerns about the form of the proposed limit, CPP requests further discussions to arrive at a mutually agreeable limit.

CPP is also proposing to lower the emission limit for NO_X from the current limit of 0.25 lb/MMBtu to 0.15 lb/MMBtu. Due to the combined stack configuration, CPP is proposing a single RACT limit for the West Stack of 0.15 lb/MMBtu. Refer to Section 2.4 for details of this proposed RACT emission limit.

2.4 Proposed RACT Emission Limit for West Stack

As discussed above, the five (5) boilers that exhaust to the West Stack are not currently capable of meeting the presumptive RACT limit and all possible control technologies are not technically feasible or not cost effective. Emissions to the West Stack are monitored using a single Continuous Emissions Monitoring System (CEMS) for NO_X. Nevertheless, CPP has reviewed what we believe to be an achievable NO_X limitation for the remaining useful life of Boilers 3 through 7 and is proposing a more stringent limit for the West Stack of 0.15 lb/MMBtu on a 30-operating day rolling average. 12,13

In addition to the proposed RACT limit, CPP will also continue to comply with NO_X PALs for site-wide emissions including the boilers, and with NO_X requirements in New Source Performance Standard (NSPS) Subpart Db for Boiler 3.

2.4.1 Suggested Additional Permit Conditions

As discussed above, CPP is proposing an emission limit for the West Stack along with operating limits for each boiler as alternative RACT for Boilers 3 through 7. The proposed permit conditions are provided below to clarify CPP's proposal:

- ► Combined emissions from Boilers 3 through 7 to the West Stack shall not exceed 0.15 lb/MMBtu on a 30-operating day rolling average basis as measured by a single CEMS.
- ▶ Boiler 3 fuel consumption shall be limited to 1,069,730 gallons of #2 fuel oil and 748.80 MMSCF of natural gas per year on a 12-month rolling basis.
- ▶ Boilers 4 through 7 fuel consumption shall each be limited to 408,000 MMBtu per boiler per year on a 12-month rolling basis, combined between heat input from natural gas and #2 fuel oil.

2.4.2 Compliance Timeline

Until DOEE provides a final determination on this alternative RACT plan, CPP will continue to comply with the NO_x limitations in our existing Chapter 2 and Title V permits. In addition, we will keep records that support a compliance demonstration with our proposed limits if accepted by DOEE in a final alternative RACT determination.

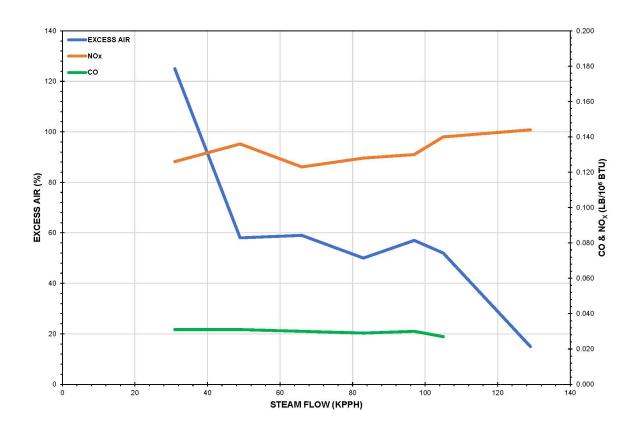
¹² The current NO_x emission limit is 0.2 lb/MMBtu for Boiler 3 and 0.25 lb/MMBtu for Boilers 4 through 7.

 $^{^{13}}$ To support this limit, CPP performed an upper prediction limit (UPL) calculation, consistent with EPA's methodology for setting emission limits for existing sources with monitoring data. Based on the UPL analysis using data from 2018 through 2021, an appropriate limit for the West Stack would be 0.22 lb/MMBtu. See Appendix C for additional information.

APPENDIX A. DETAILED COST CALCULATIONS — ALLOWABLE EMISSIONS

This appendix contains detailed cost effectiveness calculations based on allowable emissions for:

- ▶ Installing LNBs with FGR on Boiler 3
- ▶ Installing LNBs with FGR on Boilers 4 through 7


U.S. Capitol Power Plant Boiler 3 (CU-3) Cost Analysis for Reducing NO $_{\rm X}$ Emissions by Installing Low NO $_{\rm X}$ Burners (LNB) and Flue Gas Recirculation (FGR)

Cost Item	Computational Method	Cost	Notes
Purchased Equipment Costs			
Burner FGR Fan Total Equipment Costs		\$1,100,000 \$150,000 \$1,250,000 (A)	Project Cost Estimate Provided by AEI dated January 2022.
Direct Installation Costs			
Burner Installation Front Wall Modifications Gas Piping Oil Piping Breaching Control Damper Control Wiring Control/BMS Incorporation Electrical Total	(4. 10)	\$80,000 \$60,000 \$20,000 \$100,000 \$20,000 \$50,000 \$60,000 \$460,000 (B)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
Total Purchased Equipment and Direct	(A + B)	\$1,710,000 (C)	
Indirect Installation Costs			
Engineering Construction and Field Expenses Contractor Fees Start-up Contingencies Total	0.10 (C) 0.04 (C) 0.10 (C) 0.02 (C) 0.03 (C)	\$171,000 \$68,400 \$171,000 \$34,200 \$51,300 \$495,900 (D)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
AOC Required Indirect Installation Costs			
Contingency Construction Admin Government Test and QC AOC Construction Management AOC PM Fees Other Total	0.20 (C + D) 0.04 (C + D) 0.025 (C + D) 0.20 (C + D) 0.05 (C + D) 0.05 (C + D)	\$441,180 \$88,236 \$55,148 \$441,180 \$110,295 \$110,295 \$1,246,334 (E)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
Total Installed Capital Cost	(C + D + E)	\$3,452,234 (F)	
Direct Annual Costs		N/A	
Indirect Annual Costs			
Capital Recovery	CRF (F)	\$343,931 (G)	Reference EPA CCM 6th Edition, Section 1, Chapter 2, Equation 2.8a. CRF based on 15 years and 5.5% interest rate.
Total Annualized Cost	(G)	\$343,931	
Cost Effectiveness Baseline NO _X Emissions (tpy)		68.3	Allowable emissions accounting for proposed NOx RACT limit of 0.15 lb/MMBtu and existing fuel usage limits
Max Heat Input on Gas (MMBtu/yr) Controlled NO _X Emissions Rate on Gas		763,776 0.05	Potential heat input based on 748.8 MMscf/yr limit and 1,020 Btu/scf RACT limit for natural gas (20 DCMR 805.5(e)(2)(B))
(lb/MMBtu) Max Heat Input on Oil (MMBtu/yr)		146,553	
Controlled NO _x Emissions Rate on Oil			Potential heat input based on 1,069,730 gal/yr limit and 0.137 MMBtu/gal
(lb/MMBtu) Controlled NO _X Emissions (tpy)		0.12 27.9	RACT limit for fuel oil (20 DCMR 805.5(e)(2)(A))
Control Operating Time (%) NO _X Emissions Removed (ton/yr) Cost (\$/ton NO _X removed)		100% 40.4 \$8,516	

Cost Item	Computational Method	Cost	Notes
Purchased Equipment Costs Burner FGR Fan Total Equipment Costs		\$225,000 \$25,000 \$250,000 (A)	Project Cost Estimate Provided by AEI dated January 2022.
Direct Installation Costs Burner Installation Front Wall Modifications Gas Piping Oil Piping Breaching Control Damper Control Wiring Control/BMS Incorporation Electrical Total Total Purchased Equipment and Direct	(A + B)	\$20,000 \$30,000 \$10,000 \$10,000 \$50,000 \$15,000 \$25,000 \$30,000 \$25,000 \$215,000 (B)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
Indirect Installation Costs Engineering Construction and Field Expenses Contractor Fees Start-up Contingencies Total	0.10 (C) 0.04 (C) 0.10 (C) 0.02 (C) 0.03 (C)	\$46,500 \$18,600 \$46,500 \$9,300 \$13,950 \$134,850 (D)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
AOC Required Indirect Installation Costs Contingency Construction Admin Government Test and QC AOC Construction Management AOC PM Fees Other Total	0.20 (C + D) 0.04 (C + D) 0.025 (C + D) 0.20 (C + D) 0.05 (C + D) 0.05 (C + D)	\$119,970 \$23,994 \$14,996 \$119,970 \$29,993 \$29,993 \$338,915 (E)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
Total Installed Capital Cost	(C + D + E)	\$938,765 (F)	
Direct Annual Costs Indirect Annual Costs		N/A	Reference EPA CCM 6th Edition, Section 1, Chapter 2, Equation 2.8a. CRF
Capital Recovery	CRF (F)	\$93,525 (G)	based on 15 years and 5.5% interest rate.
Total Annualized Cost	(G)	\$93,525	
Cost Effectiveness - Per Boiler Baseline NO _X Emissions (tpy) Max Heat Input (MMBtu/yr) Controlled NO _X Emissions Rate on Oil (lb/MMBtu) Controlled NO _X Emissions (tpy)		30.6 525,600 0.09 23.7	Allowable emissions accounting for proposed NOx RACT limits of 0.15 lb/MMBtu and 408,000 MMBtu/yr per boiler Potential Heat Input (60 MMBtu/hr * 8760 hr/yr) RACT limit for fuel oil (20 DCMR 805.5(e)(3)(A))
Control Operating Time (%) NO _x Emissions Removed (ton/yr) Cost (\$/ton NO _x removed)		100% 6.9 \$13,461	

APPENDIX B. BOILER 3 PERFORMANCE TEST DATA

GAS Setting Data Jobsite: Architect of the Capital Max Heat Input: Fired Vessel: Hoffman Combustion Engineering Unit capacity: 180 kPPH ACE Project No.: USC200221 Burner: _ AOC CPP BOILER No. 3 Date: 12/3/2020 Systems Engr.: Paul Merluzzi #/mmbtu Unit ID: Fuel: Natural Gas Burner Tech: Jim Bolton Before After Before After Before After Before Before After Before Time (24 hr) 10:15 10:39 10:51 11:06 11:18 11:33 5:30 Х Curve Point 0 2 2 3 3 4 4 5 5 6 6 6 6 Boiler Master output 15 20 20 30 30 40 40 50 50 60 60 70 70 80 80 Gas Valve Pos. 30 33.6 33.2 39 39 44 45.5 51 51.3 57.5 56.2 61 63 61 67 Windbox press., "w.c. 0.38 0.44 0.66 0.58 1.26 1.08 1 68 1.41 1.93 1.72 2.65 2 15 3.05 2.15 Furnace pressure., "wc -0.27 -0.19 -0.21 -0.18 -0.15 -0.12 -0.13 -0.18 -0.31 -0.23 -0.14 -0.16 -0.3 -0.16 -0.16 Throat DP 0.65 0.63 0.87 0.76 1.41 1.2 1.81 1.59 2.24 1.95 2.79 2.31 3.35 2.31 2.31 Gas supply, psig 17 18.36 18.3 18.1 18.24 17.9 18.1 17.8 17.8 17.6 17.62 17.3 17.3 16.7 17.3 Gas @ burner, psig 0.15 0.24 0.22 0.45 0.45 0.82 0.84 1.27 1.27 1.78 1.84 2.41 2.41 2.87 Gas flow, kscfh 30 39 38 58 58 78 79 98 97 117 118 137 136 137 150 FD Damper 42 42 41 43.6 46 52 53 58 57 64 64 71 70 71 98 Burner 1 Register Setting 2.5 18 2.5 34.46 57.75 2.5 2.5 31.35 3 41.74 49.51 3.5 3.5 100 3 Burner 2 Register Setting/Air Dampe 3 3 18 3.5 31.35 3.5 34.46 3.5 41.74 4.2 49.51 4.5 57.75 4.5 100 Burner 3 Register Setting/Air Dampe 3.5 3.5 18 3.5 31.35 34,46 4.5 41.74 49.51 5.2 57.75 5.2 100 Burner 4 Register Setting/Air Dampe 2.5 2 18 2.2 31.35 34.46 3 41.74 49.51 3.2 57.75 3.2 100 2 3 ID Damper 54 48 57 61.3 67 75.3 77 79 74 77.5 78 79 78 79 89.4 ID Fan RPM 461 413 421 406 400 437 433 487 535 618 628 707 724 707 824 Steam Pressure, psig 188 189 188.85 189 193 193.5 192 198.3 196 198.15 206 207.3 182.05 190 208 Steam flow, kpph 24 33 46 64 97 108 105 31 49 66 81 83 98 108 129 Installed Stack Oxygen 12.31 9.7 7.9 5.21 5.02 5.2 3.96 3.8 3.64 3.4 3.41 3.3 3.41 5.6 6.1 Combustion Air Flow, CFM 10732 10777 12575 11977 16793 16513 21235 19551 24043 22721 28816 26562 32880 26562 44097 O2 %, dry Testo 12.68 10.5 12 6.93 8.01 6.98 8.1 5.56 4.98 7.90 5.27 7.5 5.27 2.93 8 NOx. ppm. raw Testo 41.50 58.90 51.90 89.90 80.90 85.50 72.60 97.70 76.50 100.30 78.40 106.30 86.90 119.50 106.30 NO, ppm, raw Testo 29.00 56.00 49.00 87.00 78.00 83.00 70.00 95.00 74.00 98.00 76.00 104.00 85.00 104.00 117.00 NO2, ppm, raw Testo 12.5 2.9 2.9 2.5 2.5 2.4 2.3 1.9 2.5 2.9 2.9 2.6 2.7 2.3 2.3 CO, ppm, raw Testo 4 0 21 0 30 0 29 0 28 0 30 0 27 0 0 CO2 %, dry Testo 4.64 4.87 7.3 5.85 7.84 6.92 7.81 6.7 8.6 7.2 8.93 7.2 8.76 8.76 8.76 NOv #MMRtu 0.109 0.126 0.139 0.133 0.138 0.136 0.130 0.147 0.147 0.144 0.123 0.136 0.123 0.128 0.140 CO, #MMBtu [™] 0.006 0.000 0.031 0.000 0.031 0.000 0.030 0.000 0.029 0.000 0.030 0.000 0.027 0.000 0.000 Efficiency 80.0 78.0 83.4 78.0 85.3 77.0 85.2 79.0 85.2 79.0 85.0 77.0 84.8 77.0 76.0 Econ Inlet Temp., Deg. F 397.0 400.8 386.0 410.0 396.0 434.0 419.0 460.0 450.0 493.0 484.0 524.0 505.0 551.0 Econ Out Temp., Deg. F 177.0 191.0 192.0 191.0 227.0 190.5 219.0 217.0 178.0 218.0 184.0 223.0 227.0 191.0 239.0 Stack Temperature, Deg F 272 271 279 289 303 313 Comb. air temp, deg F 64 64 64 64 64 63 63 63 63 62 62 61 61 61 61 FW Flow GPM 43 78 124 149 139 195 164 236 218 236 245 68 123 208 209 FW Flow KPPH 21.5 39 34 62 61.5 74.5 69.5 97.5 82 104 104.5 118 109 118 122.5 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% FW Inlet Temp. to Econ 233.0 234.0 234.0 233 233.0 233.0 233.0 233.0 233.0 234.0 234.0 233.0 233.0 233.0 Opacity. % 5.2 5.1 5.7 5.4 5.3 4.2 4.1 3.9 4.9 3.9 5.1 4.0 4.3 5.3 5.8

West Stack N		
Date	NO _x Date (lb/MMBtu)	
1/1/2019	0.107	-2.2349
1/2/2019	0.109	-2.2164
1/3/2019	0.109	-2.2164
1/4/2019	0.108	-2.2256
1/5/2019	0.107	-2.2349
1/6/2019	0.113	-2.1804
1/7/2019	0.112	-2.1893
1/8/2019	0.104	-2.2634
1/9/2019	0.115	-2.1628
1/10/2019	0.114	-2.1716
1/11/2019	0.116	-2.1542
1/12/2019	0.116	-2.1542
1/13/2019	0.114	-2.1716
1/14/2019	0.114	-2.1716
1/15/2019	0.116	-2.1542
1/16/2019	0.114	-2.1716
1/17/2019	0.115	-2.1628
1/18/2019	0.113	-2.1804
1/19/2019	0.114	-2.1716
1/20/2019	0.113	-2.1804
1/21/2019	0.116	-2.1542
1/22/2019	0.12	-2.1203
1/23/2019	0.118	-2.1371
1/24/2019	0.109	-2.2164
1/25/2019	0.117	-2.1456
1/26/2019	0.117	-2.1456
1/27/2019	0.121	-2.1120
1/28/2019	0.121	-2.1120
1/29/2019	0.120	-2.1203
1/30/2019	0.120	-2.1203
1/31/2019	0.121	-2.1120

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
2/1/2019	0.118	-2.1371
2/2/2019	0.118	-2.1371
2/3/2019	0.117	-2.1456
2/4/2019	0.114	-2.1716
2/5/2019	0.111	-2.1982
2/6/2019	0.113	-2.1804
2/7/2019	0.111	-2.1982
2/8/2019	0.114	-2.1716
2/9/2019	0.122	-2.1037
2/10/2019	0.118	-2.1371
2/11/2019	0.113	-2.1804
2/12/2019	0.114	-2.1716
2/13/2019	0.116	-2.1542
2/14/2019	0.117	-2.1456
2/15/2019	0.118	-2.1371
2/16/2019	0.119	-2.1286
2/17/2019	0.116	-2.1542
2/18/2019	0.116	-2.1542
2/19/2019	0.119	-2.1286
2/20/2019	0.115	-2.1628
2/21/2019	0.115	-2.1628
2/22/2019	0.119	-2.1286
2/23/2019	0.118	-2.1371
2/24/2019	0.116	-2.1542
2/25/2019	0.121	-2.1120
2/26/2019	0.122	-2.1037
2/27/2019	0.118	-2.1371
2/28/2019	0.119	-2.1286

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
3/1/2019	0.117	-2.1456
3/2/2019	0.114	-2.1716
3/3/2019	0.118	-2.1371
3/4/2019	0.119	-2.1286
3/5/2019	0.122	-2.1037
3/6/2019	0.123	-2.0956
3/7/2019	0.123	-2.0956
3/8/2019	0.118	-2.1371
3/9/2019	0.119	-2.1286
3/10/2019	0.112	-2.1893
3/11/2019	0.117	-2.1456
3/12/2019	0.118	-2.1371
3/13/2019	0.117	-2.1456
3/14/2019	0.114	-2.1716
3/15/2019	0.107	-2.2349
3/16/2019	0.119	-2.1286
3/17/2019	0.119	-2.1286
3/18/2019	0.118	-2.1371
3/19/2019	0.12	-2.1203
3/20/2019	0.119	-2.1286
3/21/2019	0.111	-2.1982
3/22/2019	0.113	-2.1804
3/23/2019	0.12	-2.1203
3/24/2019	0.121	-2.1120
3/25/2019	0.112	-2.1893
3/26/2019	0.117	-2.1456
3/27/2019	0.119	-2.1286
3/28/2019	0.114	-2.1716
3/29/2019	0.105	-2.2538
3/30/2019	0.114	-2.1716
3/31/2019	0.115	-2.1628

West Stack N	NO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
4/1/2019	0.122	-2.1037
4/2/2019	0.12	-2.1203
4/3/2019	0.121	-2.1120
4/4/2019	0.119	-2.1286
4/5/2019	0.113	-2.1804
4/6/2019	0.112	-2.1893
4/7/2019	0.108	-2.2256
4/8/2019	0.101	-2.2926
4/9/2019	0.104	-2.2634
4/10/2019	0.115	-2.1628
4/11/2019	0.108	-2.2256
4/12/2019	0.1	-2.3026
4/13/2019	0.096	-2.3434
4/14/2019	0.094	-2.3645
4/15/2019	0.105	-2.2538
4/16/2019	0.116	-2.1542
4/17/2019	0.108	-2.2256
4/18/2019	0.104	-2.2634
4/19/2019	0.093	-2.3752
4/20/2019	0.1	-2.3026
4/21/2019	0.105	-2.2538
4/22/2019	0.105	-2.2538
4/23/2019	0.106	-2.2443
4/24/2019	0.108	-2.2256
4/25/2019	0.108	-2.2256
4/26/2019	0.099	-2.3126
4/27/2019	0.113	-2.1804
4/28/2019	0.106	-2.2443
4/29/2019	0.109	-2.2164
4/30/2019	0.1	-2.3026

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
5/1/2019	0.1	-2.3026
5/2/2019	0.094	-2.3645
5/3/2019	0.089	-2.4191
5/4/2019	0.094	-2.3645
5/5/2019	0.094	-2.3645
5/6/2019	0.1	-2.3026
5/7/2019	0.096	-2.3434
5/8/2019	0.097	-2.3330
5/9/2019	0.096	-2.3434
5/10/2019	0.094	-2.3645
5/11/2019	0.098	-2.3228
5/12/2019	0.099	-2.3126
5/13/2019	0.104	-2.2634
5/14/2019	0.105	-2.2538
5/15/2019	0.104	-2.2634
5/16/2019	0.099	-2.3126
5/17/2019	0.094	-2.3645
5/18/2019	0.093	-2.3752
5/19/2019	0.092	-2.3860
5/20/2019	0.098	-2.3228
5/21/2019	0.105	-2.2538
5/22/2019	0.105	-2.2538
5/23/2019	0.094	-2.3645
5/24/2019	0.098	-2.3228
5/25/2019	0.092	-2.3860
5/26/2019	0.087	-2.4418
5/27/2019	0.091	-2.3969
5/28/2019	0.086	-2.4534
5/29/2019	0.084	-2.4769
5/30/2019	0.088	-2.4304
5/31/2019	0.091	-2.3969

West Stack N	NO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
6/1/2019	0.095	-2.3539
6/2/2019	0.09	-2.4079
6/3/2019	0.104	-2.2634
6/4/2019	0.106	-2.2443
6/5/2019	0.089	-2.4191
6/6/2019	0.085	-2.4651
6/7/2019	0.087	-2.4418
6/8/2019	0.096	-2.3434
6/9/2019	0.092	-2.3860
6/10/2019	0.088	-2.4304
6/11/2019	0.097	-2.3330
6/12/2019	0.098	-2.3228
6/13/2019	0.091	-2.3969
6/14/2019	0.102	-2.2828
6/15/2019	0.098	-2.3228
6/16/2019	0.09	-2.4079
6/17/2019	0.086	-2.4534
6/18/2019	0.085	-2.4651
6/19/2019	0.084	-2.4769
6/20/2019	0.087	-2.4418
6/21/2019	0.092	-2.3860
6/22/2019	0.088	-2.4304
6/23/2019	0.083	-2.4889
6/24/2019	0.078	-2.5510
6/25/2019	0.075	-2.5903
6/26/2019	0.084	-2.4769
6/27/2019	0.087	-2.4418
6/28/2019	0.086	-2.4534
6/29/2019	0.086	-2.4534
6/30/2019	0.091	-2.3969

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
7/1/2019	0.09	-2.4079
7/2/2019	0.063	-2.7646
7/3/2019	0.024	-3.7297
7/4/2019	0.016	-4.1352
7/5/2019	0.018	-4.0174
7/6/2019	0.021	-3.8632
7/7/2019	0.029	-3.5405
7/8/2019	0.024	-3.7297
7/9/2019	0.018	-4.0174
7/10/2019	0.02	-3.9120
7/11/2019	0.022	-3.8167
7/12/2019	0.027	-3.6119
7/13/2019	0.022	-3.8167
7/14/2019	0.023	-3.7723
7/15/2019	0.049	-3.0159
7/16/2019	0.065	-2.7334
7/17/2019	0.049	-3.0159
7/18/2019	0.026	-3.6497
7/19/2019	0.039	-3.2442
7/20/2019	0.018	-4.0174
7/21/2019	0.029	-3.5405
7/22/2019	0.02	-3.9120
7/23/2019	0.023	-3.7723
7/24/2019	0.019	-3.9633
7/25/2019	0.024	-3.7297
7/26/2019	0.038	-3.2702
7/27/2019	0.043	-3.1466
7/28/2019	0.039	-3.2442
7/29/2019	0.042	-3.1701
7/30/2019	0.065	-2.7334
7/31/2019	0.063	-2.7646

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
8/1/2019	0.062	-2.7806
8/2/2019	0.056	-2.8824
8/3/2019	0.025	-3.6889
8/4/2019	0.024	-3.7297
8/5/2019	0.029	-3.5405
8/6/2019	0.031	-3.4738
8/7/2019	0.047	-3.0576
8/8/2019	0.049	-3.0159
8/9/2019	0.036	-3.3242
8/10/2019	0.034	-3.3814
8/11/2019	0.055	-2.9004
8/12/2019	0.042	-3.1701
8/13/2019	0.022	-3.8167
8/14/2019	0.028	-3.5756
8/15/2019	0.03	-3.5066
8/16/2019	0.049	-3.0159
8/17/2019	0.024	-3.7297
8/18/2019	0.029	-3.5405
8/19/2019	0.031	-3.4738
8/20/2019	0.055	-2.9004
8/21/2019	0.037	-3.2968
8/22/2019	0.039	-3.2442
8/23/2019	0.02	-3.9120
8/24/2019	0.022	-3.8167
8/25/2019	0.051	-2.9759
8/26/2019	0.053	-2.9375
8/27/2019	0.08	-2.5257
8/28/2019	0.075	-2.5903
8/29/2019	0.083	-2.4889
8/30/2019	0.08	-2.5257
8/31/2019	0.079	-2.5383

West Stack N	NO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
9/1/2019	0.039	-3.2442
9/2/2019	0.053	-2.9375
9/3/2019	0.032	-3.4420
9/4/2019	0.027	-3.6119
9/5/2019	0.092	-2.3860
9/6/2019	0.134	-2.0099
9/7/2019	0.132	-2.0250
9/8/2019	0.137	-1.9878
9/9/2019	0.139	-1.9733
9/10/2019	0.133	-2.0174
9/11/2019	0.126	-2.0715
9/12/2019	0.121	-2.1120
9/13/2019	0.12	-2.1203
9/14/2019	0.117	-2.1456
9/15/2019	0.12	-2.1203
9/16/2019	0.118	-2.1371
9/17/2019	0.115	-2.1628
9/18/2019	0.129	-2.0479
9/19/2019	0.134	-2.0099
9/20/2019	0.108	-2.2256
9/21/2019	0.085	-2.4651
9/22/2019	0.082	-2.5010
9/23/2019	0.088	-2.4304
9/24/2019	0.091	-2.3969
9/25/2019	0.1	-2.3026
9/26/2019	0.097	-2.3330
9/27/2019	0.097	-2.3330
9/28/2019	0.088	-2.4304
9/29/2019	0.089	-2.4191
9/30/2019	0.094	-2.3645

West Stack N	O _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
10/1/2019	0.093	-2.3752
10/2/2019	0.089	-2.4191
10/3/2019	0.089	-2.4191
10/4/2019	0.1	-2.3026
10/5/2019	0.102	-2.2828
10/6/2019	0.092	-2.3860
10/7/2019	0.095	-2.3539
10/8/2019	0.103	-2.2730
10/9/2019	0.102	-2.2828
10/10/2019	0.103	-2.2730
10/11/2019	0.107	-2.2349
10/12/2019	0.101	-2.2926
10/13/2019	0.103	-2.2730
10/14/2019	0.099	-2.3126
10/15/2019	0.096	-2.3434
10/16/2019	0.092	-2.3860
10/17/2019	0.098	-2.3228
10/18/2019	0.098	-2.3228
10/19/2019	0.097	-2.3330
10/20/2019	0.091	-2.3969
10/21/2019	0.096	-2.3434
10/22/2019	0.088	-2.4304
10/23/2019	0.099	-2.3126
10/24/2019	0.101	-2.2926
10/25/2019	0.098	-2.3228
10/26/2019	0.1	-2.3026
10/27/2019	0.097	-2.3330
10/28/2019	0.099	-2.3126
10/29/2019	0.093	-2.3752
10/30/2019	0.092	-2.3860
10/31/2019	0.087	-2.4418

West Stack N	O _x Emissions]
Date	NO _x (lb/MMBtu)	Ln of Raw Data
11/1/2019	0.108	-2.2256
11/2/2019	0.108	-2.2256
11/3/2019	0.106	-2.2443
11/4/2019	0.107	-2.2349
11/5/2019	0.105	-2.2538
11/6/2019	0.106	-2.2443
11/7/2019	0.103	-2.2730
11/8/2019	0.113	-2.1804
11/9/2019	0.114	-2.1716
11/10/2019	0.109	-2.2164
11/11/2019	0.108	-2.2256
11/12/2019	0.11	-2.2073
11/13/2019	0.118	-2.1371
11/14/2019	0.115	-2.1628
11/15/2019	0.105	-2.2538
11/16/2019	0.113	-2.1804
11/17/2019	0.117	-2.1456
11/18/2019	0.111	-2.1982
11/19/2019	0.11	-2.2073
11/20/2019	0.112	-2.1893
11/21/2019	0.113	-2.1804
11/22/2019	0.109	-2.2164
11/23/2019	0.112	-2.1893
11/24/2019	0.112	-2.1893
11/25/2019	0.113	-2.1804
11/26/2019	0.11	-2.2073
11/27/2019	0.108	-2.2256
11/28/2019	0.114	-2.1716
11/29/2019	0.117	-2.1456
11/30/2019	0.117	-2.1456

West Stack N	O _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
12/1/2019	0.111	-2.1982
12/2/2019	0.111	-2.1982
12/3/2019	0.115	-2.1628
12/4/2019	0.113	-2.1804
12/5/2019	0.116	-2.1542
12/6/2019	0.115	-2.1628
12/7/2019	0.118	-2.1371
12/8/2019	0.115	-2.1628
12/9/2019	0.109	-2.2164
12/10/2019	0.104	-2.2634
12/11/2019	0.115	-2.1628
12/12/2019	0.117	-2.1456
12/13/2019	0.111	-2.1982
12/14/2019	0.109	-2.2164
12/15/2019	0.113	-2.1804
12/16/2019	0.112	-2.1893
12/17/2019	0.113	-2.1804
12/18/2019	0.117	-2.1456
12/19/2019	0.118	-2.1371
12/20/2019	0.116	-2.1542
12/21/2019	0.116	-2.1542
12/22/2019	0.116	-2.1542
12/23/2019	0.114	-2.1716
12/24/2019	0.114	-2.1716
12/25/2019	0.113	-2.1804
12/26/2019	0.111	-2.1982
12/27/2019	0.107	-2.2349
12/28/2019	0.109	-2.2164
12/29/2019	0.106	-2.2443
12/30/2019	0.102	-2.2828
12/31/2019	0.111	-2.1982

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
1/1/2020	0.114	-2.1716
1/2/2020	0.115	-2.1628
1/3/2020	0.106	-2.2443
1/4/2020	0.105	-2.2538
1/5/2020	0.114	-2.1716
1/6/2020	0.114	-2.1716
1/7/2020	0.112	-2.1893
1/8/2020	0.116	-2.1542
1/9/2020	0.115	-2.1628
1/10/2020	0.111	-2.1982
1/11/2020	0.101	-2.2926
1/12/2020	0.102	-2.2828
1/13/2020	0.108	-2.2256
1/14/2020	0.107	-2.2349
1/15/2020	0.106	-2.2443
1/16/2020	0.11	-2.2073
1/17/2020	0.11	-2.2073
1/18/2020	0.114	-2.1716
1/19/2020	0.111	-2.1982
1/20/2020	0.112	-2.1893
1/21/2020	0.113	-2.1804
1/22/2020	0.116	-2.1542
1/23/2020	0.116	-2.1542
1/24/2020	0.114	-2.1716
1/25/2020	0.106	-2.2443
1/26/2020	0.11	-2.2073
1/27/2020	0.109	-2.2164
1/28/2020	0.109	-2.2164
1/29/2020	0.112	-2.1893
1/30/2020	0.114	-2.1716
1/31/2020	0.11	-2.2073

West Stack N	O _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
2/1/2020	0.109	-2.2164
2/2/2020	0.109	-2.2164
2/3/2020	0.109	-2.2164
2/4/2020	0.103	-2.2730
2/5/2020	0.103	-2.2730
2/6/2020	0.105	-2.2538
2/7/2020	0.104	-2.2634
2/8/2020	0.111	-2.1982
2/9/2020	0.110	-2.2073
2/10/2020	0.105	-2.2538
2/11/2020	0.101	-2.2926
2/12/2020	0.108	-2.2256
2/13/2020	0.102	-2.2828
2/14/2020	0.109	-2.2164
2/15/2020	0.113	-2.1804
2/16/2020	0.115	-2.1628
2/17/2020	0.113	-2.1804
2/18/2020	0.109	-2.2164
2/19/2020	0.111	-2.1982
2/20/2020	0.113	-2.1804
2/21/2020	0.115	-2.1628
2/22/2020	0.115	-2.1628
2/23/2020	0.114	-2.1716
2/24/2020	0.112	-2.1893
2/25/2020	0.104	-2.2634
2/26/2020	0.103	-2.2730
2/27/2020	0.112	-2.1893
2/28/2020	0.112	-2.1893
2/29/2020	0.111	-2.1982

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
3/1/2020	0.114	-2.1716
3/2/2020	0.111	-2.1982
3/3/2020	0.104	-2.2634
3/4/2020	0.111	-2.1982
3/5/2020	0.113	-2.1804
3/6/2020	0.111	-2.1982
3/7/2020	0.115	-2.1628
3/8/2020	0.114	-2.1716
3/9/2020	0.111	-2.1982
3/10/2020	0.097	-2.3330
3/11/2020	0.105	-2.2538
3/12/2020	0.106	-2.2443
3/13/2020	0.108	-2.2256
3/14/2020	0.113	-2.1804
3/15/2020	0.106	-2.2443
3/16/2020	0.107	-2.2349
3/17/2020	0.104	-2.2634
3/18/2020	0.107	-2.2349
3/19/2020	0.096	-2.3434
3/20/2020	0.095	-2.3539
3/21/2020	0.101	-2.2926
3/22/2020	0.105	-2.2538
3/23/2020	0.102	-2.2828
3/24/2020	0.104	-2.2634
3/25/2020	0.103	-2.2730
3/26/2020	0.103	-2.2730
3/27/2020	0.102	-2.2828
3/28/2020	0.097	-2.3330
3/29/2020	0.099	-2.3126
3/30/2020	0.105	-2.2538
3/31/2020	0.105	-2.2538

West Stack N	NO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
4/1/2020	0.105	-2.2538
4/2/2020	0.11	-2.2073
4/3/2020	0.109	-2.2164
4/4/2020	0.103	-2.2730
4/5/2020	0.101	-2.2926
4/6/2020	0.104	-2.2634
4/7/2020	0.099	-2.3126
4/8/2020	0.099	-2.3126
4/9/2020	0.103	-2.2730
4/10/2020	0.109	-2.2164
4/11/2020	0.11	-2.2073
4/12/2020	0.101	-2.2926
4/13/2020	0.096	-2.3434
4/14/2020	0.108	-2.2256
4/15/2020	0.109	-2.2164
4/16/2020	0.111	-2.1982
4/17/2020	0.109	-2.2164
4/18/2020	0.106	-2.2443
4/19/2020	0.108	-2.2256
4/20/2020	0.104	-2.2634
4/21/2020	0.105	-2.2538
4/22/2020	0.112	-2.1893
4/23/2020	0.104	-2.2634
4/24/2020	0.099	-2.3126
4/25/2020	0.102	-2.2828
4/26/2020	0.1	-2.3026
4/27/2020	0.104	-2.2634
4/28/2020	0.104	-2.2634
4/29/2020	0.103	-2.2730
4/30/2020	0.098	-2.3228

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
5/1/2020	0.113	-2.1804
5/2/2020	0.102	-2.2828
5/3/2020	0.094	-2.3645
5/4/2020	0.093	-2.3752
5/5/2020	0.1	-2.3026
5/6/2020	0.113	-2.1804
5/7/2020	0.109	-2.2164
5/8/2020	0.111	-2.1982
5/9/2020	0.11	-2.2073
5/10/2020	0.11	-2.2073
5/11/2020	0.114	-2.1716
5/12/2020	0.114	-2.1716
5/13/2020	0.116	-2.1542
5/14/2020	0.114	-2.1716
5/15/2020	0.113	-2.1804
5/16/2020	0.107	-2.2349
5/17/2020	0.107	-2.2349
5/18/2020	0.108	-2.2256
5/19/2020	0.11	-2.2073
5/20/2020	0.109	-2.2164
5/21/2020	0.114	-2.1716
5/22/2020	0.104	-2.2634
5/23/2020	0.104	-2.2634
5/24/2020	0.101	-2.2926
5/25/2020	0.099	-2.3126
5/26/2020	0.096	-2.3434
5/27/2020	0.093	-2.3752
5/28/2020	0.1	-2.3026
5/29/2020	0.093	-2.3752
5/30/2020	0.095	-2.3539
5/31/2020	0.098	-2.3228

West Stack N	NO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
6/1/2020	0.105	-2.2538
6/2/2020	0.098	-2.3228
6/3/2020	0.089	-2.4191
6/4/2020	0.087	-2.4418
6/5/2020	0.087	-2.4418
6/6/2020	0.093	-2.3752
6/7/2020	0.104	-2.2634
6/8/2020	0.105	-2.2538
6/9/2020	0.093	-2.3752
6/10/2020	0.087	-2.4418
6/11/2020	0.092	-2.3860
6/12/2020	0.105	-2.2538
6/13/2020	0.106	-2.2443
6/14/2020	0.105	-2.2538
6/15/2020	0.104	-2.2634
6/16/2020	0.104	-2.2634
6/17/2020	0.096	-2.3434
6/18/2020	0.094	-2.3645
6/19/2020	0.093	-2.3752
6/20/2020	0.091	-2.3969
6/21/2020	0.092	-2.3860
6/22/2020	0.092	-2.3860
6/23/2020	0.091	-2.3969
6/24/2020	0.097	-2.3330
6/25/2020	0.095	-2.3539
6/26/2020	0.097	-2.3330
6/27/2020	0.09	-2.4079
6/28/2020	0.09	-2.4079
6/29/2020	0.094	-2.3645
6/30/2020	0.096	-2.3434

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
7/1/2020	0.091	-2.3969
7/2/2020	0.095	-2.3539
7/3/2020	0.095	-2.3539
7/4/2020	0.093	-2.3752
7/5/2020	0.087	-2.4418
7/6/2020	0.088	-2.4304
7/7/2020	0.089	-2.4191
7/8/2020	0.091	-2.3969
7/9/2020	0.088	-2.4304
7/10/2020	0.087	-2.4418
7/11/2020	0.091	-2.3969
7/12/2020	0.094	-2.3645
7/13/2020	0.094	-2.3645
7/14/2020	0.098	-2.3228
7/15/2020	0.098	-2.3228
7/16/2020	0.117	-2.1456
7/17/2020	0.094	-2.3645
7/18/2020	0.111	-2.1982
7/19/2020	0.104	-2.2634
7/20/2020	0.101	-2.2926
7/21/2020	0.103	-2.2730
7/22/2020	0.091	-2.3969
7/23/2020	0.035	-3.3524
7/24/2020	0.03	-3.5066
7/25/2020	0.028	-3.5756
7/26/2020	0.033	-3.4112
7/27/2020	0.028	-3.5756
7/28/2020	0.042	-3.1701
7/29/2020	0.046	-3.0791
7/30/2020	0.043	-3.1466
7/31/2020	0.035	-3.3524

West Stack N	O _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
8/1/2020	0.026	-3.6497
8/2/2020		
8/3/2020		
8/4/2020		
8/5/2020		
8/6/2020		
8/7/2020	0.058	-2.8473
8/8/2020	0.044	-3.1236
8/9/2020	0.075	-2.5903
8/10/2020	0.09	-2.4079
8/11/2020	0.086	-2.4534
8/12/2020	0.089	-2.4191
8/13/2020	0.09	-2.4079
8/14/2020	0.091	-2.3969
8/15/2020	0.095	-2.3539
8/16/2020	0.094	-2.3645
8/17/2020	0.095	-2.3539
8/18/2020	0.098	-2.3228
8/19/2020	0.096	-2.3434
8/20/2020	0.099	-2.3126
8/21/2020	0.094	-2.3645
8/22/2020	0.092	-2.3860
8/23/2020	0.093	-2.3752
8/24/2020	0.092	-2.3860
8/25/2020	0.096	-2.3434
8/26/2020	0.1	-2.3026
8/27/2020	0.095	-2.3539
8/28/2020	0.093	-2.3752
8/29/2020	0.09	-2.4079
8/30/2020	0.102	-2.2828
8/31/2020	0.097	-2.3330

West Stack N	NO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
9/1/2020	0.044	-3.1236
9/2/2020	0.079	-2.5383
9/3/2020	0.089	-2.4191
9/4/2020	0.091	-2.3969
9/5/2020	0.102	-2.2828
9/6/2020	0.097	-2.3330
9/7/2020	0.096	-2.3434
9/8/2020	0.09	-2.4079
9/9/2020	0.084	-2.4769
9/10/2020	0.083	-2.4889
9/11/2020	0.087	-2.4418
9/12/2020	0.094	-2.3645
9/13/2020	0.093	-2.3752
9/14/2020	0.096	-2.3434
9/15/2020	0.102	-2.2828
9/16/2020	0.097	-2.3330
9/17/2020	0.09	-2.4079
9/18/2020	0.096	-2.3434
9/19/2020	0.106	-2.2443
9/20/2020	0.105	-2.2538
9/21/2020	0.105	-2.2538
9/22/2020	0.103	-2.2730
9/23/2020	0.102	-2.2828
9/24/2020	0.094	-2.3645
9/25/2020	0.092	-2.3860
9/26/2020	0.091	-2.3969
9/27/2020	0.088	-2.4304
9/28/2020	0.089	-2.4191
9/29/2020	0.09	-2.4079
9/30/2020	0.099	-2.3126

West Stack N	O _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
10/1/2020	0.101	-2.2926
10/2/2020	0.103	-2.2730
10/3/2020	0.104	-2.2634
10/4/2020	0.102	-2.2828
10/5/2020	0.102	-2.2828
10/6/2020	0.1	-2.3026
10/7/2020	0.099	-2.3126
10/8/2020	0.107	-2.2349
10/9/2020	0.103	-2.2730
10/10/2020	0.096	-2.3434
10/11/2020	0.091	-2.3969
10/12/2020	0.094	-2.3645
10/13/2020	0.099	-2.3126
10/14/2020	0.101	-2.2926
10/15/2020	0.096	-2.3434
10/16/2020	0.11	-2.2073
10/17/2020	0.114	-2.1716
10/18/2020	0.111	-2.1982
10/19/2020	0.106	-2.2443
10/20/2020	0.103	-2.2730
10/21/2020	0.097	-2.3330
10/22/2020	0.098	-2.3228
10/23/2020	0.099	-2.3126
10/24/2020	0.103	-2.2730
10/25/2020	0.105	-2.2538
10/26/2020	0.109	-2.2164
10/27/2020	0.114	-2.1716
10/28/2020	0.108	-2.2256
10/29/2020	0.112	-2.1893
10/30/2020	0.123	-2.0956
10/31/2020	0.125	-2.0794

West Stack N	O _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
11/1/2020	0.118	-2.1371
11/2/2020	0.125	-2.0794
11/3/2020	0.123	-2.0956
11/4/2020	0.119	-2.1286
11/5/2020	0.116	-2.1542
11/6/2020	0.114	-2.1716
11/7/2020	0.116	-2.1542
11/8/2020	0.11	-2.2073
11/9/2020	0.121	-2.1120
11/10/2020	0.119	-2.1286
11/11/2020	0.124	-2.0875
11/12/2020	0.12	-2.1203
11/13/2020	0.124	-2.0875
11/14/2020	0.128	-2.0557
11/15/2020	0.13	-2.0402
11/16/2020	0.141	-1.9590
11/17/2020	0.129	-2.0479
11/18/2020	0.127	-2.0636
11/19/2020	0.129	-2.0479
11/20/2020	0.121	-2.1120
11/21/2020	0.1	-2.3026
11/22/2020	0.099	-2.3126
11/23/2020	0.102	-2.2828
11/24/2020	0.111	-2.1982
11/25/2020	0.104	-2.2634
11/26/2020	0.093	-2.3752
11/27/2020	0.096	-2.3434
11/28/2020	0.096	-2.3434
11/29/2020	0.099	-2.3126
11/30/2020	0.117	-2.1456

West Stack N	O _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
12/1/2020	0.12	-2.1203
12/2/2020	0.119	-2.1286
12/3/2020	0.094	-2.3645
12/4/2020	0.093	-2.3752
12/5/2020	0.111	-2.1982
12/6/2020	0.113	-2.1804
12/7/2020	0.113	-2.1804
12/8/2020	0.115	-2.1628
12/9/2020	0.115	-2.1628
12/10/2020	0.112	-2.1893
12/11/2020	0.103	-2.2730
12/12/2020	0.107	-2.2349
12/13/2020	0.108	-2.2256
12/14/2020	0.109	-2.2164
12/15/2020	0.113	-2.1804
12/16/2020	0.112	-2.1893
12/17/2020	0.112	-2.1893
12/18/2020	0.112	-2.1893
12/19/2020	0.11	-2.2073
12/20/2020	0.112	-2.1893
12/21/2020	0.11	-2.2073
12/22/2020	0.11	-2.2073
12/23/2020	0.114	-2.1716
12/24/2020	0.103	-2.2730
12/25/2020	0.11	-2.2073
12/26/2020	0.115	-2.1628
12/27/2020	0.114	-2.1716
12/28/2020	0.111	-2.1982
12/29/2020	0.113	-2.1804
12/30/2020	0.114	-2.1716
12/31/2020	0.108	-2.2256

West Stack N	O _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
1/1/2021	0.112	-2.1893
1/2/2021	0.109	-2.2164
1/3/2021	0.11	-2.2073
1/4/2021	0.111	-2.1982
1/5/2021	0.11	-2.2073
1/6/2021	0.111	-2.1982
1/7/2021	0.113	-2.1804
1/8/2021	0.114	-2.1716
1/9/2021	0.115	-2.1628
1/10/2021	0.113	-2.1804
1/11/2021	0.111	-2.1982
1/12/2021	0.114	-2.1716
1/13/2021	0.106	-2.2443
1/14/2021	0.115	-2.1628
1/15/2021	0.114	-2.1716
1/16/2021	0.108	-2.2256
1/17/2021	0.111	-2.1982
1/18/2021	0.11	-2.2073
1/19/2021	0.113	-2.1804
1/20/2021	0.113	-2.1804
1/21/2021	0.114	-2.1716
1/22/2021	0.112	-2.1893
1/23/2021	0.114	-2.1716
1/24/2021	0.114	-2.1716
1/25/2021	0.113	-2.1804
1/26/2021	0.11	-2.2073
1/27/2021	0.11	-2.2073
1/28/2021	0.114	-2.1716
1/29/2021	0.117	-2.1456
1/30/2021	0.116	-2.1542
1/31/2021	0.113	-2.1804

West Stack N	NO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
2/1/2021	0.112	-2.1893
2/2/2021	0.112	-2.1893
2/3/2021	0.114	-2.1716
2/4/2021	0.116	-2.1542
2/5/2021	0.112	-2.1893
2/6/2021	0.115	-2.1628
2/7/2021	0.112	-2.1893
2/8/2021	0.116	-2.1542
2/9/2021	0.111	-2.1982
2/10/2021	0.111	-2.1982
2/11/2021	0.111	-2.1982
2/12/2021	0.112	-2.1893
2/13/2021	0.113	-2.1804
2/14/2021	0.113	-2.1804
2/15/2021	0.111	-2.1982
2/16/2021	0.109	-2.2164
2/17/2021	0.114	-2.1716
2/18/2021	0.111	-2.1982
2/19/2021	0.11	-2.2073
2/20/2021	0.115	-2.1628
2/21/2021	0.114	-2.1716
2/22/2021	0.11	-2.2073
2/23/2021	0.109	-2.2164
2/24/2021	0.111	-2.1982
2/25/2021	0.113	-2.1804
2/26/2021	0.114	-2.1716
2/27/2021	0.106	-2.2443
2/28/2021	0.102	-2.2828

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
3/1/2021	0.109	-2.2164
3/2/2021	0.117	-2.1456
3/3/2021	0.115	-2.1628
3/4/2021	0.113	-2.1804
3/5/2021	0.116	-2.1542
3/6/2021	0.117	-2.1456
3/7/2021	0.118	-2.1371
3/8/2021	0.114	-2.1716
3/9/2021	0.115	-2.1628
3/10/2021	0.112	-2.1893
3/11/2021	0.113	-2.1804
3/12/2021	0.109	-2.2164
3/13/2021	0.112	-2.1893
3/14/2021	0.115	-2.1628
3/15/2021	0.115	-2.1628
3/16/2021	0.112	-2.1893
3/17/2021	0.109	-2.2164
3/18/2021	0.106	-2.2443
3/19/2021	0.113	-2.1804
3/20/2021	0.119	-2.1286
3/21/2021	0.115	-2.1628
3/22/2021	0.113	-2.1804
3/23/2021	0.107	-2.2349
3/24/2021	0.099	-2.3126
3/25/2021	0.099	-2.3126
3/26/2021	0.102	-2.2828
3/27/2021	0.107	-2.2349
3/28/2021	0.103	-2.2730
3/29/2021	0.117	-2.1456
3/30/2021	0.112	-2.1893
3/31/2021	0.102	-2.2828

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
4/1/2021	0.113	-2.1804
4/2/2021	0.117	-2.1456
4/3/2021	0.119	-2.1286
4/4/2021	0.116	-2.1542
4/5/2021	0.115	-2.1628
4/6/2021	0.113	-2.1804
4/7/2021	0.108	-2.2256
4/8/2021	0.108	-2.2256
4/9/2021	0.096	-2.3434
4/10/2021	0.093	-2.3752
4/11/2021	0.092	-2.3860
4/12/2021	0.097	-2.3330
4/13/2021	0.107	-2.2349
4/14/2021	0.096	-2.3434
4/15/2021	0.099	-2.3126
4/16/2021	0.103	-2.2730
4/17/2021	0.102	-2.2828
4/18/2021	0.107	-2.2349
4/19/2021	0.094	-2.3645
4/20/2021	0.1	-2.3026
4/21/2021	0.101	-2.2926
4/22/2021	0.112	-2.1893
4/23/2021	0.115	-2.1628
4/24/2021	0.111	-2.1982
4/25/2021	0.107	-2.2349
4/26/2021	0.116	-2.1542
4/27/2021	0.108	-2.2256
4/28/2021	0.103	-2.2730
4/29/2021	0.098	-2.3228
4/30/2021	0.11	-2.2073

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
5/1/2021	0.113	-2.1804
5/2/2021	0.102	-2.2828
5/3/2021	0.094	-2.3645
5/4/2021	0.093	-2.3752
5/5/2021	0.1	-2.3026
5/6/2021	0.113	-2.1804
5/7/2021	0.109	-2.2164
5/8/2021	0.111	-2.1982
5/9/2021	0.11	-2.2073
5/10/2021	0.11	-2.2073
5/11/2021	0.114	-2.1716
5/12/2021	0.114	-2.1716
5/13/2021	0.116	-2.1542
5/14/2021	0.114	-2.1716
5/15/2021	0.113	-2.1804
5/16/2021	0.107	-2.2349
5/17/2021	0.107	-2.2349
5/18/2021	0.108	-2.2256
5/19/2021	0.11	-2.2073
5/20/2021	0.109	-2.2164
5/21/2021	0.114	-2.1716
5/22/2021	0.104	-2.2634
5/23/2021	0.104	-2.2634
5/24/2021	0.101	-2.2926
5/25/2021	0.099	-2.3126
5/26/2021	0.096	-2.3434
5/27/2021	0.093	-2.3752
5/28/2021	0.1	-2.3026
5/29/2021	0.093	-2.3752
5/30/2021	0.095	-2.3539
5/31/2021	0.098	-2.3228

West Stack N	NO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
6/1/2021	0.094	-2.3645
6/2/2021	0.092	-2.3860
6/3/2021	0.084	-2.4769
6/4/2021	0.093	-2.3752
6/5/2021	0.092	-2.3860
6/6/2021	0.095	-2.3539
6/7/2021	0.085	-2.4651
6/8/2021	0.082	-2.5010
6/9/2021	0.083	-2.4889
6/10/2021	0.084	-2.4769
6/11/2021	0.086	-2.4534
6/12/2021	0.092	-2.3860
6/13/2021	0.09	-2.4079
6/14/2021	0.092	-2.3860
6/15/2021	0.095	-2.3539
6/16/2021	0.103	-2.2730
6/17/2021	0.104	-2.2634
6/18/2021	0.098	-2.3228
6/19/2021	0.091	-2.3969
6/20/2021	0.085	-2.4651
6/21/2021	0.084	-2.4769
6/22/2021	0.09	-2.4079
6/23/2021	0.102	-2.2828
6/24/2021	0.1	-2.3026
6/25/2021	0.094	-2.3645
6/26/2021	0.086	-2.4534
6/27/2021	0.087	-2.4418
6/28/2021	0.086	-2.4534
6/29/2021	0.088	-2.4304
6/30/2021	0.089	-2.4191

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
7/1/2021	0.085	-2.4651
7/2/2021	0.091	-2.3969
7/3/2021	0.095	-2.3539
7/4/2021	0.093	-2.3752
7/5/2021	0.09	-2.4079
7/6/2021	0.086	-2.4534
7/7/2021	0.087	-2.4418
7/8/2021	0.086	-2.4534
7/9/2021	0.087	-2.4418
7/10/2021	0.093	-2.3752
7/11/2021	0.087	-2.4418
7/12/2021	0.085	-2.4651
7/13/2021	0.086	-2.4534
7/14/2021	0.087	-2.4418
7/15/2021	0.087	-2.4418
7/16/2021	0.095	-2.3539
7/17/2021	0.088	-2.4304
7/18/2021	0.096	-2.3434
7/19/2021	0.094	-2.3645
7/20/2021	0.093	-2.3752
7/21/2021	0.094	-2.3645
7/22/2021	0.103	-2.2730
7/23/2021	0.102	-2.2828
7/24/2021	0.098	-2.3228
7/25/2021	0.089	-2.4191
7/26/2021	0.09	-2.4079
7/27/2021	0.093	-2.3752
7/28/2021	0.095	-2.3539
7/29/2021	0.091	-2.3969
7/30/2021	0.099	-2.3126
7/31/2021	0.105	-2.2538

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
8/1/2021	0.093	-2.3752
8/2/2021	0.1	-2.3026
8/3/2021	0.098	-2.3228
8/4/2021	0.098	-2.3228
8/5/2021	0.098	-2.3228
8/6/2021	0.096	-2.3434
8/7/2021	0.093	-2.3752
8/8/2021	0.094	-2.3645
8/9/2021	0.086	-2.4534
8/10/2021	0.083	-2.4889
8/11/2021	0.083	-2.4889
8/12/2021	0.083	-2.4889
8/13/2021	0.085	-2.4651
8/14/2021	0.084	-2.4769
8/15/2021	0.089	-2.4191
8/16/2021	0.083	-2.4889
8/17/2021	0.084	-2.4769
8/18/2021	0.08	-2.5257
8/19/2021	0.084	-2.4769
8/20/2021	0.084	-2.4769
8/21/2021	0.084	-2.4769
8/22/2021	0.085	-2.4651
8/23/2021	0.084	-2.4769
8/24/2021	0.085	-2.4651
8/25/2021	0.086	-2.4534
8/26/2021	0.09	-2.4079
8/27/2021	0.089	-2.4191
8/28/2021	0.088	-2.4304
8/29/2021	0.088	-2.4304
8/30/2021	0.088	-2.4304
8/31/2021	0.089	-2.4191

West Stack N	IO _x Emissions	
Date	NO _x (lb/MMBtu)	Ln of Raw Data
9/1/2021	0.088	-2.4304
9/2/2021	0.106	-2.2443
9/3/2021	0.106	-2.2443
9/4/2021	0.102	-2.2828
9/5/2021	0.096	-2.3434
9/6/2021	0.101	-2.2926
9/7/2021	0.103	-2.2730
9/8/2021	0.094	-2.3645
9/9/2021	0.097	-2.3330
9/10/2021	0.102	-2.2828
9/11/2021	0.095	-2.3539
9/12/2021	0.093	-2.3752
9/13/2021	0.091	-2.3969
9/14/2021	0.074	-2.6037
9/15/2021	0.026	-3.6497
9/16/2021	0.027	-3.6119
9/17/2021	0.023	-3.7723
9/18/2021	0.028	-3.5756
9/19/2021	0.047	-3.0576
9/20/2021	0.098	-2.3228
9/21/2021	0.094	-2.3645
9/22/2021	0.088	-2.4304
9/23/2021	0.09	-2.4079
9/24/2021	0.032	-3.4420
9/25/2021	0.058	-2.8473
9/26/2021	0.101	-2.2926
9/27/2021	0.099	-2.3126
9/28/2021	0.095	-2.3539
9/29/2021	0.102	-2.2828
9/30/2021	0.093	-2.3752

West Stack N		
Date	NO _x (lb/MMBtu)	Ln of Raw Data
10/1/2021	0.099	-2.3126
10/2/2021	0.097	-2.3330
10/3/2021	0.092	-2.3860
10/4/2021	0.092	-2.3860
10/5/2021	0.09	-2.4079
10/6/2021	0.091	-2.3969
10/7/2021	0.095	-2.3539
10/8/2021	0.094	-2.3645
10/9/2021	0.095	-2.3539
10/10/2021	0.092	-2.3860
10/11/2021	0.094	-2.3645
10/12/2021	0.093	-2.3752
10/13/2021	0.092	-2.3860
10/14/2021	0.094	-2.3645
10/15/2021	0.092	-2.3860
10/16/2021	0.095	-2.3539
10/17/2021	0.105	-2.2538
10/18/2021	0.105	-2.2538
10/19/2021	0.106	-2.2443
10/20/2021	0.103	-2.2730
10/21/2021	0.101	-2.2926
10/22/2021	0.102	-2.2828
10/23/2021	0.099	-2.3126
10/24/2021	0.101	-2.2926
10/25/2021	0.098	-2.3228
10/26/2021	0.101	-2.2926
10/27/2021	0.102	-2.2828
10/28/2021	0.09	-2.4079
10/29/2021	0.093	-2.3752
10/30/2021	0.099	-2.3126
10/31/2021	0.097	-2.3330

West Stack N		
Date	NO _x (lb/MMBtu)	Ln of Raw Data
11/1/2021	0.099	-2.3126
11/2/2021	0.101	-2.2926
11/3/2021	0.103	-2.2730
11/4/2021	0.103	-2.2730
11/5/2021	0.109	-2.2164
11/6/2021	0.105	-2.2538
11/7/2021	0.106	-2.2443
11/8/2021	0.11	-2.2073
11/9/2021	0.1	-2.3026
11/10/2021	0.102	-2.2828
11/11/2021	0.098	-2.3228
11/12/2021	0.099	-2.3126
11/13/2021	0.105	-2.2538
11/14/2021	0.106	-2.2443
11/15/2021	0.112	-2.1893
11/16/2021	0.108	-2.2256
11/17/2021	0.108	-2.2256
11/18/2021	0.122	-2.1037
11/19/2021	0.112	-2.1893
11/20/2021	0.112	-2.1893
11/21/2021	0.107	-2.2349
11/22/2021	0.107	-2.2349
11/23/2021	0.114	-2.1716
11/24/2021	0.107	-2.2349
11/25/2021	0.106	-2.2443
11/26/2021	0.109	-2.2164
11/27/2021	0.111	-2.1982
11/28/2021	0.11	-2.2073
11/29/2021	0.114	-2.1716
11/30/2021	0.113	-2.1804

West Stack N		
Date	NO _x (lb/MMBtu)	Ln of Raw Data
12/1/2021	0.110	-2.2073
12/2/2021	0.106	-2.2443
12/3/2021	0.110	-2.2073
12/4/2021	0.109	-2.2164
12/5/2021	0.111	-2.1982
12/6/2021	0.107	-2.2349
12/7/2021	0.116	-2.1542
12/8/2021	0.114	-2.1716
12/9/2021	0.112	-2.1893
12/10/2021	0.107	-2.2349
12/11/2021	0.101	-2.2926
12/12/2021	0.112	-2.1893
12/13/2021	0.110	-2.2073
12/14/2021	0.107	-2.2349
12/15/2021	0.106	-2.2443
12/16/2021	0.105	-2.2538
12/17/2021	0.108	-2.2256
12/18/2021	0.109	-2.2164
12/19/2021	0.111	-2.1982
12/20/2021	0.114	-2.1716
12/21/2021	0.111	-2.1982
12/22/2021	0.111	-2.1982
12/23/2021	0.115	-2.1628
12/24/2021	0.112	-2.1893
12/25/2021	0.104	-2.2634
12/26/2021	0.106	-2.2443
12/27/2021	0.109	-2.2164
12/28/2021	0.107	-2.2349
12/29/2021	0.102	-2.2828
12/30/2021	0.099	-2.3126
12/31/2021	0.100	-2.3026

Testing Normality	Raw Data	Logtransformed Data		
Sample Size	1091.00	1091.00		
Curtosis	4.94	10.59		
SE Kurtosis	0.15	0.15		Average of Raw Data
esult Kurtosis	non normal	non normal		Variance of Raw Data
kewness	-2.12	-3.21		
E Skewness	0.07	0.07	Result Raw Data	Result Log Data
esult Skewness	non normal	non normal	non normal	non normal

2. Calculate sample size, n=

1091

3. Calculate

$$\hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n}$$

-2.35E+00

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

0.108421516

5. m= number future runs =

1

6. Calculate

4. Calculate

$$\beta_{2z} = \frac{e^{4\vec{\sigma}^2} + 2e^{3\vec{\sigma}^2} + 3e^{2\vec{\sigma}^2} - 3}{m\left(e^{\vec{\sigma}^2} - 1\right)^2} + 3\left(1 - \frac{1}{m}\right)$$

a- Numerator first term

$$e^{4\hat{\sigma}^2} + 2e^{3\hat{\sigma}^2} + 3e^{2\hat{\sigma}^2} - 3$$

5.038175402

b- denominator first term

$$m\left(e^{\hat{\sigma}^2}-1\right)^2$$

0.013114242

B

384.1758629

7. Calculate

$$\sqrt{\beta_{1z}} = \frac{\sqrt{e^{\hat{\sigma}^2} - 1} \left(e^{\hat{\sigma}^2} + 2 \right)}{\sqrt{m}}$$

1.05396592

8. Go to tab distribution for 99 percentile "z-stat"

9. substitue the values of

 $\sqrt{\beta_{lz}}$

in cell D7 and F7 respectively

10. In column AE indentify the value that is the smallest value that is larger than 0.99, note what row number this is.

12. calculate the UPL using the formula

$$UPL = e^{\hat{\mu} + \frac{\hat{\sigma}^2}{2}} + \frac{Z_{.99}}{m} \sqrt{me^{2\hat{\mu} + \hat{\sigma}^2} (e^{\hat{\sigma}^2} - 1) + m^2 e^{2\hat{\mu} + \hat{\sigma}^2} \left(\frac{\hat{\sigma}^2}{n} + \frac{\hat{\sigma}^4}{2(n-1)}\right)}$$

a- Calculate $ho^{\hat{\mu}+}$

0.100612465

b- Calculate $o^{2\beta}$

0.010122868

c- Calculate $(e^{\hat{\sigma}^2} -$

0.114517433

d-calculate $\left(\frac{\hat{\sigma}^2}{n} + \frac{\hat{\sigma}^4}{2(n-1)^2}\right)$

0.00010477

e-Calculate $\sqrt{me^{2\hat{\mu}+\hat{\sigma}^2}(e^{\hat{\sigma}^2}-1)+m^2e^{2\hat{\mu}+\hat{\sigma}^2}}\left(\frac{\hat{\sigma}^2}{n}+\frac{\hat{\sigma}^4}{2(n-1)}\right)$

0.034063

f- Calculate UPL

0.219

				distribution of Z				
	a	$\sqrt{\beta_{1z}}$ $\left[1 - \frac{\sqrt{\beta_{1z}}}{6} \left(3z - z^3\right) + \frac{\left(\beta_{2z} - 3\right)\left(3 - 6z^2 + z^4\right)}{24}\right]$	Normal distribution	$f_G(z) = \left(1 - \frac{\sqrt{\beta_{1z}}}{6} \left(3z - z^3\right) + \frac{\left(\beta_{2z} - 3\right)\left(3 - 6z^2 + z^4\right)}{24}\right) \phi(z)$				
Δz z	β_{2z}	6 () 24	$\phi(z)$	6 () 24	Absolute values	$\left \frac{\Delta x}{2}\left(f(a)+2\sum_{i=1}^{M}f(x_{i})+f(b)\right)\right $	Cumulative norn	nalization
0.101	384.1759	1.053966			_	2 (
-5 =f(a)		7573.43	1.48672E-06	0.011259566	0.011259566	0.000568608	0.000568608	1.27647E-05
1 -4.899 2 -4.798		6891.875 6254.987	2.45094E-06 3.9995E-06	0.016891569 0.025016836	0.016891569 0.025016836	0.001706049 0.0025267	0.002274657 0.004801357	5.10639E-05 0.000107786
3 -4.697		5660.863	6.46025E-06	0.036570572	0.036570572	0.003693628	0.008494985	0.000107780
4 -4.596		5107.64	1.03291E-05	0.052757267	0.052757267	0.005328484	0.013823469	0.000310324
5 -4.495		4593.495	1.63472E-05	0.075090993	0.075090993	0.00758419	0.021407659	0.000480582
6 -4.394 7 -4.293		4116.642 3675.339	2.56093E-05 3.97118E-05	0.105424163 0.145954186	0.105424163 0.145954186	0.01064784 0.014741373	0.032055499 0.046796872	0.000719616 0.001050546
8 -4.192		3267.879	6.09553E-05	0.199194386	0.199194386	0.020118633	0.066915505	0.001502191
9 -4.091		2892.598	9.26132E-05	0.267892746	0.267892746	0.027057167	0.093972673	0.002109599
10 -3.99 11 -3.889		2547.871 2232.112	0.000139285 0.000207351	0.354880196 0.462830004	0.354880196 0.462830004	0.0358429 0.04674583	0.129815572 0.176561403	0.002914239 0.003963639
12 -3.788		1943.775	0.000305546	0.593912444	0.593912444	0.059985157	0.23654656	0.005310251
13 -3.687		1681.353	0.000445674	0.749335136	0.749335136	0.075682849	0.312229408	0.00700926
14 -3.586		1443.38 1228.428	0.000643469 0.000919619	0.928770299 1.129686014	0.928770299 1.129686014	0.0938058 0.114098287	0.406035209	0.009115113
15 -3.485 16 -3.384		1228.428	0.000919619	1.129686014 1.346619439	1.129686014	0.114098287 0.136008563	0.520133496 0.656142059	0.011676514 0.01472978
17 -3.283		862.0801	0.001821704	1.570454681	1.570454681	0.158615923	0.814757982	0.01829056
18 -3.182		708.0278	0.002525035	1.787794595	1.787794595	0.180567254	0.995325236	0.022344127
19 -3.081 20 -2.98		571.6855 451.8245	0.003464389 0.004704958	1.980540796 2.125815006	1.980540796 2.125815006	0.20003462 0.214707316	1.195359857 1.410067172	0.026834718 0.031654698
21 -2.879		347.2557	0.004704938	2.196362236	2.125815006	0.221832586	1.631899758	0.036634634
22 -2.778		256.8298	0.008416337	2.161566436	2.161566436	0.21831821	1.850217968	0.041535675
23 -2.677		179.437	0.011085658	1.989177375	1.989177375	0.200906915	2.051124883	0.046045848
24 -2.576 25 -2.475		114.0072 59.51004	0.014453386 0.018652949	1.647790329 1.11003767	1.647790329 1.11003767	0.166426823 0.112113805	2.217551706 2.329665511	0.049781976 0.052298827
26 -2.374		14.95473	0.023828414	0.356347523	0.356347523	0.0359911	2.365656611	0.053106793
27 -2.273		-20.6098	0.030130931	-0.620991902	0.620991902	0.062720182	2.428376793	0.054514803
28 -2.172		-48.0949 -68.3724	0.03771375	-1.813839526 -3.194754887	1.813839526	0.183197792	2.611574585	0.058627423
29 -2.071 30 -1.97		-68.3724 -82.2744	0.046725789 0.057303789	-3.194/5488/ -4.714632449	3.194754887 4.714632449	0.322670244 0.476177877	2.934244829 3.410422706	0.065871071 0.076560822
31 -1.869		-90.5932	0.069563239	-6.3019543	6.3019543	0.636497384	4.04692009	0.090849597
32 -1.768		-94.0816	0.083588399	-7.864130245	7.864130245	0.794277155	4.841197245	0.108680381
33 -1.667 34 -1.566		-93.4527 -89.38	0.099421884 0.117054396	-9.291246469 -10.46232016	9.291246469 10.46232016	0.938415893 1.056694336	5.779613138 6.836307475	0.129746946 0.153468752
34 -1.566 35 -1.465		-89.38 -82.4971	0.117054396	-10.46232016	11.2538731	1.136641183	7.972948658	0.153468752
36 -1.364		-73.3982	0.157365126	-11.55032056	11.55032056	1.166582377	9.139531034	0.205173981
37 -1.263		-62.6377	0.179689839	-11.25536185	11.25536185	1.136791547	10.27632258	0.230693896
38 -1.162 39 -1.061		-50.7304 -38.1513	0.203099244 0.227228529	-10.30330005 -8.66905697	10.30330005 8.66905697	1.040633305 0.875574754	11.31695589 12.19253064	0.254055147 0.273710986
40 -0.96		-25.3358	0.251644341	-6.375622167	6.375622167	0.643937839	12.83646848	0.288166793
41 -0.859		-12.6799	0.275855243	-3.497806242	3.497806242	0.35327843	13.18974691	0.296097565
42 -0.758 43 -0.657		-0.53942 10.76906	0.299326439 0.321498297	-0.161461403 3.462233897	0.161461403 3.462233897	0.016307602 0.349685624	13.20605451 13.55574013	0.296463656 0.304313773
43 -0.657		20,96879	0.321498297	7.167298167	7.167298167	0.723897115	13.55574013	0.304313773
45 -0.455		29.82269	0.359712192	10.72758393	10.72758393	1.083485977	15.36312323	0.344887845
46 -0.354		37.1333	0.37471238	13.91430769	13.91430769	1.405345077	16.7684683	0.376436536
47 -0.253 48 -0.152		42.74287 46.53327	0.386376486 0.394360216	16.51483824 18.3508718	16.51483824 18.3508718	1.667998663 1.853438052	18.43646697 20.28990502	0.413881556 0.455489519
49 -0.051		48.42608	0.398423793	19.29410389	19.29410389	1.948704493	22.23860951	0.499236125
50 0.05		48.38252	0.398443914	19.27772065	19.27772065	1.947049786	24.1856593	0.542945583
51 0.151		46.40347	0.394419966	18.30245606 16.43654685	18.30245606	1.848548062	26.03420736	0.58444377
52 0.252 53 0.353		42.5295 36.84081	0.386474058	13.80958851	16.43654685 13.80958851	1.660091232 1.394768439	27.69429859	0.621711276
54 0.454		29.4573	0.359875719	10.60096738	10.60096738	1.070697706	30.15976474	0.677058701
55 0.555		20.53852	0.34199778	7.024127964	7.024127964	0.709436924	30.86920166	0.692984901
56 0.656 57 0.757		10.28368 -1.06833	0.32170943 0.299553264	3.308357054 -0.320022626	3.308357054 0.320022626	0.334144062 0.032322285	31.20334572 31.23566801	0.700486124 0.70121173
58 0.858		-13.239	0.276092166	-3.655177311	3.655177311	0.369172908	31.60484092	0.709499319
59 0.959		-25.91	0.25188591	-6.526372391	6.526372391	0.659163612	32.26400453	0.724296929
60 1.06 61 1.161		-38.7236	0.227469632 0.203335281	-8.808450162 -10.42748566	8.808450162	0.889653466	33.15365799	0.744268823 0.767911647
62 1.262		-51.2822 -63.1486	0.203335281	-10.42/48566 -11.36149795	10.42748566 11.36149795	1.053176052 1.147511293	34.20683405 35.35434534	0.767911647
63 1.363		-73.8459	0.157579839	-11.63662585	11.63662585	1.175299211	36.52964455	0.820056585
64 1.464		-82.8576	0.136615273	-11.31961075	11.31961075	1.143280686	37.67292523	0.845722174
65 1.565 66 1.666		-89.6274 -93.5596	0.117237788 0.099587708	-10.5077211 -9.317383713	10.5077211 9.317383713	1.061279831 0.941055755	38.73420507 39.67526082	0.869546921 0.890672748
67 1.767		-94.0185	0.083736272	-9.517363715 -7.872758245	7.872758245	0.795148583	40.4704094	0.908523095
68 1.868		-90.329	0.069693339	-6.295328349	6.295328349	0.635828163	41.10623757	0.922796847
69 1.969		-81.7762	0.05741676	-4.695322906	4.695322906	0.474227613	41.58046518	0.933442816
70 2.07 71 2.171		-67.6055 -47.0229	0.046822635 0.037795734	-3.16546944 -1.777264272	3.16546944 1.777264272	0.319712413 0.179503692	41.90017759 42.07968129	0.940620063 0.944649754
72 2.272		-19.1943	0.030199481	-0.579659059	0.579659059	0.058545565	42.13822685	0.945964048
73 2.373		16.75361	0.023885038	0.400160695	0.400160695	0.04041623	42.17864308	0.946871354
74 2.474 75 2.575		61.73417 116.7002	0.018699163 0.014490659	1.154377228 1.691062521	1.154377228 1.691062521	0.1165921 0.170797315	42.29523518 42.4660325	0.949488739 0.95332298
75 2.575 76 2.676		116.7002 182.6442	0.014490659	1.691062521 2.030157378	2.030157378	0.170797315 0.205045895	42.4660325 42.67107839	0.95332298
77 2.777		260.5983	0.008439746	2.19938383	2.19938383	0.222137767	42.89321616	0.962912856
78 2.878		351.6345	0.006343145	2.230468844	2.230468844	0.225277353	43.11849351	0.967970124
79 2.979 80 3.08		456.8642 577.4387	0.004718997 0.003475077	2.155940932 2.00664414	2.155940932 2.00664414	0.217750034 0.202671058	43.33624354 43.5389146	0.972858409 0.977408186
3.00		31111301	0.003473077		2.0000-414	0.2020, 2030	-3.3303140	0.5,,400100

						distribution of Z				
Δz	z		$\sqrt{oldsymbol{eta}_{_{1z}}}$	$\left(1 - \frac{\sqrt{\beta_{1z}}}{6} \left(3z - z^3\right) + \frac{(\beta_{2z} - 3)(1-z^3)}{6}\right)$	$ \frac{(3-6z^2+z^4)}{24} $ Normal distribution $\phi(z)$	$f_G(z) = \left(1 - \frac{\sqrt{y}}{2}\right)$	$\frac{\overline{\beta_{1z}}}{5} \left(3z - z^3\right) + \frac{\left(\beta_{2z} - 3\right)\left(3 - 6z^2 + z^4\right)}{24} \right) \phi(z)$ Absolute val	$\frac{\Delta x}{2} \int f(a)$	$+2\sum_{i=1}^{M}f(x_{i})+f(b)$	normalization
0.1	01		384.1759 1.053	3966				2 (i=1)	
		-5 =f(a)		7573.43	1.48672E-0		0.01125956		0.000568608	1.27647E-05
	81	3.181		714.5487	0.00253308		1.81000958		43.72172557	0.981512123
	82	3.282		869.4248	0.00182769		1.5890420		43.88221882	0.985115047
	83	3.383		1043.337	0.00130535		1.361921		44.0197729	0.988203009
	84	3.484		1237.596	0.00092282	1.142089271	1.1420892	1 0.115351016	44.13512392	0.990792532
	85	3.585		1453.55	0.0006457	0.938673982	0.93867398	2 0.094806072	44.22992999	0.99292084
	86	3.686		1692.589	0.0004473	0.757128627	0.7571286	7 0.076469991	44.30639998	0.99463752
	87	3.787		1956.141	0.00030670	0.59995899	0.5999589	9 0.060595858	44.36699584	0.995997841
	88	3.888		2245.676	0.00020815	0.467456634	0.46745663	4 0.04721312	44.41420896	0.997057732
	89	3.989		2562.701	0.00013984	0.358372618	0.3583726	8 0.036195634	44.45040459	0.99787029
	90	4.09		2908.764	9.29928E-0	0.270494104	0.27049410	4 0.027319905	44.4777245	0.998483596
	91	4.191		3285.453	6.12113E-0	0.201106785	0.20110678	5 0.020311785	44.49803628	0.998939577
	92	4.292		3694.395	3.98826E-0	0.147342042	0.14734204	2 0.014881546	44.51291783	0.999273654
	93	4.393		4137.256	2.5722E-0.	0.106418586	0.10641858	6 0.010748277	44.52366611	0.999514943
	94	4.494		4615.743	1.64209E-0	0.075794591	0.07579459	1 0.007655254	44.53132136	0.999686796
	95	4.595		5131.603	1.03767E-0	0.053248925	0.05324893	5 0.005378141	44.5366995	0.999807531
	96	4.696		5686.621	6.49066E-0	0.036909916	0.03690999	6 0.003727901	44.5404274	0.999891218
	97	4.797		6282.622	4.01874E-0	0.025248203	0.02524820	3 0.002550069	44.54297747	0.999948465
	98	4.898		6921.473	2.46298E-0	0.017047415	0.0170474	5 0.001721789	44.54469926	0.999987118
	99	4.999		7605.077	1.49417E-0	0.011363285	0.01136328	5 0.000573846	44.54527311	1

APPENDIX D. SCR AND SNCR COST ANALYSIS

As discussed in Section 2, SCR and SNCR are not technically feasible for CPP's boilers due to low exhaust temperatures. However, in anticipation of questions from DOEE, CPP provided a cost effectiveness evaluation in the original alternative RACT plan to demonstrate that SCR and SNCR are both technically infeasible and not cost effective for Boilers 3 through 7. DOEE's June 23, 2023 proposal accepted that SCR and SNCR are not technically feasible. For completeness, the cost effectiveness calculations are provided again in this appendix but have not been updated.

Due to space restrictions and routing of the existing exhaust stacks, the only way to install SNCR or SCR technology on Boilers 3 through 7 would be to install an SCR/SNCR on Boiler 3, a single SCR/SNCR controlling emissions from Boilers 4 and 5, and a separate single SCR/SNCR controlling emissions from Boilers 6 and 7.

SCR cost analyses in this appendix were calculated based on EPA's *SCR Cost Calculation Spreadsheet*. ¹⁴ SNCR cost analyses were calculated based on EPA's *Air Pollution Control Cost Estimation Spreadsheets for Selective Non-Catalytic Reduction (SNCR)*. ¹⁵ Note that these spreadsheets do not account for the AOC-specific cost contingency factors utilized in the cost analyses in Appendix A. This, combined with the conservative control efficiencies that likely could not be achieved due to exhaust temperature, causes the cost effectiveness values to be conservative.

This appendix contains detailed cost effectiveness calculations for:

- ▶ Installing SCR on Boiler 3
- ▶ Installing SNCR on Boiler 3
- ▶ Installing SCR on the combined exhaust of Boilers 4 and 5
- ▶ Installing SNCR on the combined exhaust of Boilers 4 and 5
- ▶ Installing SCR on the combined exhaust of Boilers 6 and 7
- ▶ Installing SNCR on the combined exhaust of Boilers 6 and 7

¹⁴ https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution.

¹⁵ https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution (updated 3/19/2021).

Boiler 3 (EU-3) SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units	
Maximum Heat Input Rate (Q _B) =	HHV x Max. Fuel Rate =	203	MMBtu/hour	
Baseline NO _X Emissions =	Average of 2020-2021 observed emissions	13.34	tons/year	
Unit Heat Input Rate =	Average of 2020-2021 heat input	245,380	MMBtu/year	
Controlled NO _x Emissions Rate =		0.012	lb/MMBtu	
Controlled NO _X Emissions =		1.47	tons/year	
Total NO _x removed per year =	** See Footnote	11.87	tons/year	
NO _x removal factor (NRF) =	EF/80 =	1.10		
Volumetric flue gas flow rate (q _{flue gas}) =	$Q_{fuel} \times QB \times (460 + T)/(460 + 700)n_{scr} =$	59,679	acfm	
Space velocity (V _{space}) =	$q_{flue gas}/Vol_{catalyst} =$	74.92	/hour	
Residence Time	1/V _{space}	0.01	hour	
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for subbituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00		
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =			Not applicable; factor applies only to coal-fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7		not apply to plants located at elevations below 500 feet.
Retrofit Factor (RF)	Retrofit to existing boiler	1.00		

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate)($1/((1 + interest rate)^{Y} - 1)$, where $Y = H_{catalyts}/(t_{SCR} \times 24 \text{ hours})$ rounded to the nearest integer		Fraction
Catalyst volume (Vol _{catalyst}) =	$2.81 \times Q_B \times EF_{adj} \times Slipadj \times NOx_{adj} \times S_{adj} \times (T_{adj}/N_{scr})$	796.53	Cubic feet
Cross sectional area of the catalyst $(A_{catalyst}) =$	q _{flue gas} /(16ft/sec x 60 sec/min)	62	ft ²
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	5	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	71	ft ²
Reactor length and width dimensions for a square	(A \)0.5	0 [feet
reactor =	(A _{SCR})	6.5	ieet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	58	feet

Reagent Data:

Reagent Data.			
Type of reagent used	Ammonia	Molecular Weight of Reagent (MW) =	17.03 g/mole
		Density =	56 lb/ft ³

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	7	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	25	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	3	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	1,200	gallons (storage needed to store a 14 day reagent supply rounded to

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n/(1+i)^n - 1 =$	0.0720
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$A \times 1,000 \times 0.0056 \times (Coalf \times HRF)^{0.43} =$	104.38	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

^{**} Formula for NOx removed was overwritten to be consistent with methodology for LNB and PGR calculations.

Boiler 3 (EU-3) SCR Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers

For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:

TCI = 86,380 x $(200/B_{MW})^{0.35}$ x B_{MW} x ELEVF x RF

For Oil and Natural Gas-Fired Utility Boilers >500 MW:

 $TCI = 62,680 \times B_{MW} \times ELEVF \times RF$

For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour:

 $TCI = 7,850 \text{ x } (2,200/Q_B)^{0.35} \text{ x } Q_B \text{ x ELEVF x RF}$

For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour :

TCI = 10,530 x $(1,640/Q_B)^{0.35}$ x Q_B x ELEVF x RF

For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:

 $TCI = 5,700 \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:

 $TCI = 7,640 \times Q_B \times ELEVF \times RF$

Total Capital Investment (TCI) = \$5,629,948 in 2021 dollars

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$72,675 in 2021 dollars
Indirect Annual Costs (IDAC) =	\$408,322 in 2021 dollars
Total annual costs (TAC) = DAC + IDAC	\$480,997 in 2021 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCl =	\$28,150 in 2021 dollars
Annual Reagent Cost =	$m_{sol} x Cost_{reag} x t_{op} =$	\$3,415 in 2021 dollars
Annual Electricity Cost =	P x Cost _{elect} x t _{op} =	\$16,655 in 2021 dollars
Annual Catalyst Replacement Cost =		\$24,455 in 2021 dollars
	$n_{scr} \times Vol_{cat} \times (CC_{replace}/R_{layer}) \times FWF$	
Direct Annual Cost =		\$72.675 in 2021 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$2,966 in 2021 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$405,356 in 2021 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$408,322 in 2021 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$480,997 per year in 2021 dollars	
NOx Removed =	12 tons/year	
Cost Effectiveness =	\$40,531 per ton of NOx removed in 2021 dollars	

Boiler 3 (EU-3) SNCR Design Parameters

The following design parameters for the SNCR were calculated based on the values entered on the *Data Inputs* tab. These values were used to prepare the costs shown on the *Cost Estimate* tab.

Parameter	Equation	Calculated Value	Units	
Maximum Heat Input Rate (Q_B) =	HHV x Max. Fuel Rate =	203	MMBtu/hour	
Baseline NO _X Emissions =	Average of 2020-2021 observed emissions	13.34	tons/year	
Unit Heat Input Rate =	Average of 2020-2021 heat input	245,380	MMBtu/year	
Controlled NO _X Emissions Rate =		0.060	lb/MMBtu	
Controlled NO _X Emissions =		7.36	tons/year	
Total NO _x removed per year =	** See Footnote	5.98	tons/year	
Coal Factor (Coal _F) =	1 for bituminous; 1.05 for sub-bituminous; 1.07 for lignite (weighted average is used for coal blends)			Not applicable; factor applies only to coafired boilers
SO ₂ Emission rate =	(%S/100)x(64/32)*(1x10 ⁶)/HHV =			Not applicable; factor applies only to coa fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does not
Atmospheric pressure at 25 feet above sea level (P) =	2116x[(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7	psia	apply to plants located at elevations belo 500 feet.
Retrofit Factor (RF) =	Retrofit to existing boiler	1.00		

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Reagent Data:

Type of reagent used

Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/mole

Density = 56 lb/gallon

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times NSR \times MW_R)/(MW_{NOx} \times SR) =$	8	lb/hour
	(whre SR = 1 for NH ₃ ; 2 for Urea)		
Reagent Usage Rate (m _{sol}) =	$m_{reagent}/C_{sol} =$	28	lb/hour
	(m _{sol} x 7.4805)/Reagent Density =	3.7	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24 hours/day)/Reagent	1 200	gallons (storage needed to store a 14 day reagent supply
	Density =	1,500	rounded up to the nearest 100 gallons)

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n/(1+i)^n - 1 =$	0.0720
	Where n = Equipment Life and i= Interest Rate	

Parameter	Equation	Calculated Value	Units
Electricity Usage: Electricity Consumption (P) =	$(0.47 \times NOx_{in} \times NSR \times Q_B)/NPHR =$	1.2	kW/hour
Water Usage: Water consumption (q _w) =	$(m_{sol}/Density of water) x ((C_{stored}/C_{inj}) - 1) =$	6	gallons/hour
Fuel Data: Additional Fuel required to evaporate water in injected reagent (ΔFuel) =	Hv x m _{reagent} x ((1/C _{inj})-1) =	0.07	MMBtu/hour
Ash Disposal: Additional ash produced due to increased fuel consumption (Δash) =	(Δfuel x %Ash x 1x10 ⁶)/HHV =	0.0	lb/hour

Not applicable - Ash disposal cost applies only to coal-fired boilers

 $^{{\}bf **} \ {\bf Formula} \ {\bf for} \ {\bf NOx} \ {\bf removed} \ {\bf was} \ {\bf overwritten} \ {\bf to} \ {\bf be} \ {\bf consistent} \ {\bf with} \ {\bf methodology} \ {\bf for} \ {\bf LNB} \ {\bf and} \ {\bf PGR} \ {\bf calculations}.$

Boiler 3 (EU-3) SNCR Cost Estimate

Total Capital Investment (TCI)

For Coal-Fired Boilers:

 $TCI = 1.3 x (SNCR_{cost} + APH_{cost} + BOP_{cost})$

For Fuel Oil and Natural Gas-Fired Boilers:

 $TCI = 1.3 \times (SNCR_{cost} + BOP_{cost})$

Capital costs for the SNCR (SNCR _{cost}) =	\$659,894 in 2021 dollars
Air Pre-Heater Costs (APH _{cost})* =	\$0 in 2021 dollars
Balance of Plant Costs (BOP _{cost}) =	\$1,007,774 in 2021 dollars
Total Capital Investment (TCI) =	\$2,167,968 in 2021 dollars

#VALUE!

SNCR Capital Costs (SNCR_{cost})

For Coal-Fired Utility Boilers:

 $SNCR_{cost} = 220,000 \times (B_{MW} \times HRF)^{0.42} \times Coalf \times BTF \times ELEVF \times RF$

For Fuel Oil and Natural Gas-Fired Utility Boilers:

 $SNCR_{cost} = 147,000 \text{ x } (B_{MW} \text{ x HRF})^{0.42} \text{ x ELEVF x RF}$

For Coal-Fired Industrial Boilers:

 $SNCR_{cost} = 220,000 \times (0.1 \times Q_B \times HRF)^{0.42} \times Coalf \times BTF \times ELEVF \times RF$

For Fuel Oil and Natural Gas-Fired Industrial Boilers:

 $SNCR_{cost} = 147,000 \times ((Q_B/NPHR) \times HRF)^{0.42} \times ELEVF \times RF$

SNCR Capital Costs (SNCR_{cost}) =

\$659,894 in 2021 dollars

Air Pre-Heater Costs (APH_{cost})*

For Coal-Fired Utility Boilers:

 $APH_{cost} = 69,000 \times (B_{MW} \times HRF \times CoalF)^{0.78} \times AHF \times RF$

For Coal-Fired Industrial Boilers:

 $APH_{cost} = 69,000 \times (0.1 \times Q_B \times HRF \times CoalF)^{0.78} \times AHF \times RF$

Air Pre-Heater Costs (APH_{cost}) = \$0 in 2021 dollars

Balance of Plant Costs (BOPcost)

For Coal-Fired Utility Boilers:

 $BOP_{cost} = 320,000 \text{ x } (B_{MW})^{0.33} \text{ x } (NO_{x}Removed/hr)^{0.12} \text{ x BTF x RF}$

For Fuel Oil and Natural Gas-Fired Utility Boilers:

 $BOP_{cost} = 213,000 \text{ x } (B_{MW})^{0.33} \text{ x } (NO_{x}Removed/hr)^{0.12} \text{ x RF}$

For Coal-Fired Industrial Boilers:

 $BOP_{cost} = 320,000 \times (0.1 \times Q_B)^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$

For Fuel Oil and Natural Gas-Fired Industrial Boilers:

 $BOP_{cost} = 213,000 \text{ x } (Q_B/NPHR)^{0.33} \text{ x } (NO_xRemoved/hr)^{0.12} \text{ x RF}$

Balance of Plant Costs (BOP_{cost}) = \$1,007,774 in 2021 dollars

Boiler 3 (EU-3) SNCR Cost Estimate

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$36,750 in 2021 dollars
Indirect Annual Costs (IDAC) =	\$157,069 in 2021 dollars
Total annual costs (TAC) = DAC + IDAC	\$193,819 in 2021 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Water Cost) + (Annual Fuel Cost) + (Annual Ash Cost)

_		
Annual Maintenance Cost =	0.015 x TCI =	\$32,520 in 2021 dollars
Annual Reagent Cost =	$q_{sol} \times Cost_{reag} \times t_{op} =$	\$3,869 in 2021 dollars
Annual Electricity Cost =	P x Cost _{elect} x t _{op} =	\$102 in 2021 dollars
Annual Water Cost =	$q_{water} x Cost_{water} x t_{op} =$	\$32 in 2021 dollars
Additional Fuel Cost =	Δ Fuel x Cost _{fuel} x t _{op} =	\$227 in 2021 dollars
Additional Ash Cost =	Δ Ash x Cost _{ash} x t _{op} x (1/2000) =	\$0 in 2021 dollars
Direct Annual Cost =		\$36,750 in 2021 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x Annual Maintenance Cost =	\$976 in 2021 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$156,094 in 2021 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$157,069 in 2021 dollars

Cost Effectiveness

Total Annual Cost (TAC) =	\$193,819 per year in 2021 dollars	
NOx Removed =	6 tons/year	
Cost Effectiveness =	\$32,421 per ton of NOx removed in 2021 dollars	

Boiler 4,5 (EU-4,5) SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units	
Maximum Heat Input Rate (Q _B) =	HHV x Max. Fuel Rate =	120	MMBtu/hour	
Baseline NO _X Emissions =	Average of 2020-2021 observed emissions	9.04	tons/year	
Unit Heat Input Rate =	Average of 2020-2021 heat input	172,660	MMBtu/year	
Controlled NO_X Emissions Rate =		0.012	lb/MMBtu	
Controlled NO _X Emissions =		1.04	tons/year	
Total NO _x removed per year =	** See Footnote	8.01	tons/year	
NO _x removal factor (NRF) =	EF/80 =	1.10		
Volumetric flue gas flow rate (q _{flue gas}) =	$Q_{\text{fuel}} \times QB \times (460 + T)/(460 + 700)n_{\text{scr}} =$	52,350	acfm	
Space velocity (V _{space}) =	$q_{fluegas}/Vol_{catalyst} =$	111.18	/hour	
Residence Time	1/V _{space}	0.01	hour	
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for subbituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00		
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =			Not applicable; factor applies only to coal-fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7		not apply to plants located at elevations below 500 feet.
Retrofit Factor (RF)	Retrofit to existing boiler	1.00		

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate) $(1/((1+ interest rate)^{Y} - 1)$, where Y = H _{catalyts} /(t _{SCR} x 24 hours) rounded to the nearest integer		Fraction
Catalyst volume (Vol _{catalyst}) =	$2.81 \times Q_B \times EF_{adj} \times Slipadj \times NOx_{adj} \times S_{adj} \times (T_{adj}/N_{scr})$	470.85	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	55	ft ²
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	4	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	63	ft ²
Reactor length and width dimensions for a square	(A \ \0.5	7.0	feet
reactor =	(A _{SCR})	7.9	ieet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	53	feet

Reagent Data:

Type of reagent used

Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/mole

Density = 56 lb/ft³

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	4	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	15	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	2	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	700	gallons (storage needed to store a 14 day reagent supply rounded to

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n/(1+i)^n - 1 =$	0.0720
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$A \times 1,000 \times 0.0056 \times (Coalf \times HRF)^{0.43} =$	61.70	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

^{**} Formula for NOx removed was overwritten to be consistent with methodology for LNB and PGR calculations.

Boiler 4,5 (EU-4,5) SCR Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers

For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:

TCI = 86,380 x $(200/B_{MW})^{0.35}$ x B_{MW} x ELEVF x RF

For Oil and Natural Gas-Fired Utility Boilers >500 MW:

 $TCI = 62,680 \times B_{MW} \times ELEVF \times RF$

For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour:

 $TCI = 7,850 \text{ x } (2,200/Q_B)^{0.35} \text{ x } Q_B \text{ x ELEVF x RF}$

For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour :

TCI = 10,530 x $(1,640/Q_B)^{0.35}$ x Q_B x ELEVF x RF

For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:

 $TCI = 5,700 \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:

 $TCI = 7,640 \times Q_B \times ELEVF \times RF$

Total Capital Investment (TCI) = \$4,000,366 in 2021 dollars

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$48,580 in 2021 dollars
Indirect Annual Costs (IDAC) =	\$290,894 in 2021 dollars
Total annual costs (TAC) = DAC + IDAC	\$339,475 in 2021 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCl =	\$20,002 in 2021 dollars
Annual Reagent Cost =	$m_{sol} \times Cost_{reag} \times t_{op} =$	\$2,403 in 2021 dollars
Annual Electricity Cost =	P x Cost _{elect} x t _{op} =	\$11,719 in 2021 dollars
Annual Catalyst Replacement Cost =		\$14,456 in 2021 dollars
	$n_{scr} \times Vol_{cat} \times (CC_{replace}/R_{layer}) \times FWF$	
Direct Annual Cost =		\$48,580 in 2021 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$2,868 in 2021 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$288,026 in 2021 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$290,894 in 2021 dollars

Cost Effectiveness

Total Annual Cost (TAC) =	\$339,475 per year in 2021 dollars	
NOx Removed =	8 tons/year	
Cost Effectiveness =	\$42,403 per ton of NOx removed in 2021 dollars	

Boiler 4,5 (EU-4,5) SNCR Design Parameters

The following design parameters for the SNCR were calculated based on the values entered on the *Data Inputs* tab. These values were used to prepare the costs shown on the *Cost Estimate* tab.

Parameter	Equation	Calculated Value	Units	
Maximum Heat Input Rate (Q _B) =	HHV x Max. Fuel Rate =	120	MMBtu/hour	
Baseline NO _X Emissions =	Average of 2020-2021 observed emissions	9.04	tons/year	
Unit Heat Input Rate =	Average of 2020-2021 heat input	172,660	MMBtu/year	
Controlled NO _x Emissions Rate =		0.060	lb/MMBtu	
Controlled NO _X Emissions =		5.18	tons/year	
Total NO _x removed per year =	** See Footnote	3.86	tons/year	
Coal Factor (Coal _F) =	1 for bituminous; 1.05 for sub-bituminous; 1.07 for lignite (weighted average is used for coal blends)			Not applicable; factor applies only to coal-fired boilers
SO ₂ Emission rate =	(%S/100)x(64/32)*(1x10 ⁶)/HHV =			Not applicable; factor applies only to coal-fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not a militable, also ation forten de comet annul.
Atmospheric pressure at 25 feet above sea level (P) =	2116x[(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)*	14.7	psia	Not applicable; elevation factor does not apply to plants located at elevations below 500 feet.
Retrofit Factor (RF) =	Retrofit to existing boiler	1.00		

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Type of reagent used

Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/mole

Density =

.7.03 g/mole 56 lb/gallon

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times NSR \times MW_R)/(MW_{NOx} \times SR) =$	5	lb/hour
	(whre $SR = 1$ for NH_3 ; 2 for Urea)		
Reagent Usage Rate (m _{sol}) =	$m_{reagent}/C_{sol} =$	16	lb/hour
	(m _{sol} x 7.4805)/Reagent Density =	2.2	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24 hours/day)/Reagent	900	gallons (storage needed to store a 14 day reagent supply
	Density =	800	rounded up to the nearest 100 gallons)

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n/(1+i)^n - 1 =$	0.0720
	Where n = Equipment Life and i= Interest Rate	

Parameter	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$(0.47 \times NOx_{in} \times NSR \times Q_B)/NPHR =$	0.7	kW/hour
Water Usage:			
Water consumption (q _w) =	$(m_{sol}/Density of water) \times ((C_{stored}/C_{inj}) - 1) =$	4	gallons/hour
Fuel Data: Additional Fuel required to evaporate water in injected reagent (Δ Fuel) =	Hv x m _{reagent} x ((1/C _{inj})-1) =	0.04	MMBtu/hour
Ash Disposal: Additional ash produced due to increased fuel consumption (Δash) =	(Δfuel x %Ash x 1x10 ⁶)/HHV =	0.0	lb/hour

Not applicable - Ash disposal cost applies only to coal-fired boilers

^{**} Formula for NOx removed was overwritten to be consistent with methodology for LNB and PGR calculations. Reagent Data:

Boiler 4,5 (EU-4,5) SNCR Cost Estimate

Total Capital Investment (TCI)

For Coal-Fired Boilers:

 $TCI = 1.3 x (SNCR_{cost} + APH_{cost} + BOP_{cost})$

For Fuel Oil and Natural Gas-Fired Boilers:

 $TCI = 1.3 x (SNCR_{cost} + BOP_{cost})$

Capital costs for the SNCR (SNCR _{cost}) =	\$529,153 in 2021 dollars
Air Pre-Heater Costs (APH _{cost})* =	\$0 in 2021 dollars
Balance of Plant Costs (BOP _{cost}) =	\$795,466 in 2021 dollars
Total Capital Investment (TCI) =	\$1,722,005 in 2021 dollars

#VALUE!

SNCR Capital Costs (SNCR_{cost})

For Coal-Fired Utility Boilers:

 $SNCR_{cost} = 220,000 \times (B_{MW} \times HRF)^{0.42} \times Coalf \times BTF \times ELEVF \times RF$

For Fuel Oil and Natural Gas-Fired Utility Boilers:

 $SNCR_{cost} = 147,000 \times (B_{MW} \times HRF)^{0.42} \times ELEVF \times RF$

For Coal-Fired Industrial Boilers:

 $SNCR_{cost} = 220,000 \times (0.1 \times Q_B \times HRF)^{0.42} \times Coalf \times BTF \times ELEVF \times RF$

For Fuel Oil and Natural Gas-Fired Industrial Boilers:

 $SNCR_{cost} = 147,000 \times ((Q_B/NPHR) \times HRF)^{0.42} \times ELEVF \times RF$

SNCR Capital Costs (SNCR $_{cost}$) = \$529,153 in 2021 dollars

Air Pre-Heater Costs (APH_{cost})*

For Coal-Fired Utility Boilers:

 $APH_{cost} = 69,000 \times (B_{MW} \times HRF \times CoalF)^{0.78} \times AHF \times RF$

For Coal-Fired Industrial Boilers:

 $APH_{cost} = 69,000 \times (0.1 \times Q_B \times HRF \times CoalF)^{0.78} \times AHF \times RF$

Air Pre-Heater Costs (APH_{cost}) = \$0 in 2021 dollars

#VALUE!

Balance of Plant Costs (BOP_{cost})

For Coal-Fired Utility Boilers:

$$BOP_{cost} = 320,000 \times (B_{MW})^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$$

For Fuel Oil and Natural Gas-Fired Utility Boilers:

$$BOP_{cost} = 213,000 \times (B_{MW})^{0.33} \times (NO_{x}Removed/hr)^{0.12} \times RF$$

For Coal-Fired Industrial Boilers:

$$BOP_{cost} = 320,000 \text{ x } (0.1 \text{ x } Q_B)^{0.33} \text{ x } (NO_x Removed/hr)^{0.12} \text{ x BTF x RF}$$

For Fuel Oil and Natural Gas-Fired Industrial Boilers:

$$BOP_{cost} = 213,000 \times (Q_B/NPHR)^{0.33} \times (NO_xRemoved/hr)^{0.12} \times RF$$

Balance of Plant Costs (BOP_{cost}) = \$795,466 in 2021 dollars

Boiler 4,5 (EU-4,5) SNCR Cost Estimate

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$28,806 in 2021 dollars		
Indirect Annual Costs (IDAC) =	\$124,759 in 2021 dollars		
Total annual costs (TAC) = DAC + IDAC	\$153,566 in 2021 dollars		

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Water Cost) + (Annual Fuel Cost) + (Annual Ash Cost)

Annual Maintenance Cost =	0.015 x TCI =	\$25,830 in 2021 dollars
Annual Reagent Cost =	$q_{sol} \times Cost_{reag} \times t_{op} =$	\$2,722 in 2021 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$72 in 2021 dollars
Annual Water Cost =	$q_{water} \times Cost_{water} \times t_{op} =$	\$22 in 2021 dollars
Additional Fuel Cost =	Δ Fuel x Cost _{fuel} x t _{op} =	\$160 in 2021 dollars
Additional Ash Cost =	Δ Ash x Cost _{ash} x t _{op} x (1/2000) =	\$0 in 2021 dollars
Direct Annual Cost =	·	\$28,806 in 2021 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x Annual Maintenance Cost =	\$775 in 2021 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$123,984 in 2021 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$124,759 in 2021 dollars

Cost Effectiveness

Total Annual Cost (TAC) =	\$153,566 per year in 2021 dollars	
NOx Removed =	4 tons/year	
Cost Effectiveness =	\$39,763 per ton of NOx removed in 2021 dollars	

Boiler 6,7 (EU-6,7) SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units	1
Maximum Heat Input Rate (Q_B) =	HHV x Max. Fuel Rate =	120	MMBtu/hour	
Baseline NO _x Emissions =	Average of 2020-2021 observed emissions	8.20	tons/year	
Unit Heat Input Rate =	Average of 2020-2021 heat input	159,266	MMBtu/year	
Controlled NO _x Emissions Rate =		0.012	lb/MMBtu	
Controlled NO _X Emissions =		0.96	tons/year	
Total NO _x removed per year =	** See Footnote	7.25	tons/year	
NO _x removal factor (NRF) =	EF/80 =	1.10]
Volumetric flue gas flow rate (q _{flue gas}) =	$Q_{\text{fuel}} \times QB \times (460 + T)/(460 + 700)n_{\text{scr}} =$	52,350	acfm	
Space velocity (V _{space}) =	$q_{flue gas}/Vol_{catalyst} =$	111.18	/hour	
Residence Time	1/V _{space}	0.01	hour	
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00		
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =			Not applicable; factor applies only to coal-fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7	psia	not apply to plants located at elevations below 500 feet.
Retrofit Factor (RF)	Retrofit to existing boiler	1.00		

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate) $(1/((1+ interest rate)^{Y} - 1)$, where Y = H _{catalyts} /(t _{SCR} x 24 hours) rounded to the nearest integer		Fraction
Catalyst volume (Vol _{catalyst}) =	$2.81 \times Q_B \times EF_{adj} \times Slipadj \times NOx_{adj} \times S_{adj} \times (T_{adj}/N_{scr})$	470.85	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	55	ft ²
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	4	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	63	ft ²
Reactor length and width dimensions for a square	(A \ \0.5	7.0	feet
reactor =	(A _{SCR})	7.9	ieet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	53	feet

Reagent Data:

Type of reagent used

Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/mole

Density = 56 lb/ft³

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	4	lb/hour
Reagent Usage Rate (m _{sol}) =	$m_{reagent}/Csol =$	15	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	2	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	700	gallons (storage needed to store a 14 day reagent supply rounded to

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n/(1+i)^n - 1 =$	0.0720
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$A \times 1,000 \times 0.0056 \times (Coalf \times HRF)^{0.43} =$	61.70	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

^{**} Formula for NOx removed was overwritten to be consistent with methodology for LNB and PGR calculations.

Boiler 6,7 (EU-6,7) SCR Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers

For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:

 $TCI = 86,380 \text{ x } (200/B_{MW})^{0.35} \text{ x } B_{MW} \text{ x } ELEVF \text{ x } RF$

For Oil and Natural Gas-Fired Utility Boilers >500 MW:

 $TCI = 62,680 \times B_{MW} \times ELEVF \times RF$

For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour:

 $TCI = 7,850 \text{ x } (2,200/Q_B)^{0.35} \text{ x } Q_B \text{ x ELEVF x RF}$

For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour :

TCI = 10,530 x $(1,640/Q_B)^{0.35}$ x Q_B x ELEVF x RF

For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:

 $TCI = 5,700 \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:

 $TCI = 7,640 \times Q_B \times ELEVF \times RF$

Total Capital Investment (TCI) = \$4,000,366 in 2021 dollars

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$47,485 in 2021 dollars
Indirect Annual Costs (IDAC) =	\$290,894 in 2021 dollars
Total annual costs (TAC) = DAC + IDAC	\$338,379 in 2021 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$20,002 in 2021 dollars
Annual Reagent Cost =	$m_{sol} x Cost_{reag} x t_{op} =$	\$2,217 in 2021 dollars
Annual Electricity Cost =	P x Cost _{elect} x t _{op} =	\$10,810 in 2021 dollars
Annual Catalyst Replacement Cost =		\$14,456 in 2021 dollars
	n what wifee ID has FIME	
	$n_{scr} \times Vol_{cat} \times (CC_{replace}/R_{layer}) \times FWF$	
Direct Annual Cost =		\$47,485 in 2021 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$2,868 in 2021 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$288,026 in 2021 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$290,894 in 2021 dollars

Cost Effectiveness

Total Annual Cost (TAC) =	\$338,379 per year in 2021 dollars		
NOx Removed =	7 tons/year		
Cost Effectiveness =	\$46,698 per ton of NOx removed in 2021 dollars		

Boiler 6,7 (EU-6,7) **SNCR Design Parameters**

The following design parameters for the SNCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units	
Maximum Heat Input Rate (Q_B) =	HHV x Max. Fuel Rate =	120	MMBtu/hour	
Baseline NO _X Emissions =	Average of 2020-2021 observed emissions	8.20	tons/year	
Unit Heat Input Rate =	Average of 2020-2021 heat input	159,266	MMBtu/year	
Controlled NO _x Emissions Rate =		0.060	lb/MMBtu	
Controlled NO _X Emissions =		4.78	tons/year	
Total NO _x removed per year =	** See Footnote	3.42	tons/year	
Coal Factor (Coal _F) =	1 for bituminous; 1.05 for sub-bituminous; 1.07 for lignite (weighted average is used for coal blends)			Not applicable; factor applies only to coal- fired boilers
SO ₂ Emission rate =	(%S/100)x(64/32)*(1x10 ⁶)/HHV =			Not applicable; factor applies only to coal- fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does not
Atmospheric pressure at 25 feet above sea level (P) =	2116x[(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7	psia	apply to plants located at elevations below 500 feet.
Retrofit Factor (RF) =	Retrofit to existing boiler	1.00		

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Reagent Data:

Type of reagent used

Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/mole

Density = 56 lb/gallon

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times NSR \times MW_R)/(MW_{NOx} \times SR) =$	5	lb/hour
	(whre SR = 1 for NH ₃ ; 2 for Urea)		
Reagent Usage Rate (m _{sol}) =	$m_{reagent}/C_{sol} =$	16	lb/hour
	(m _{sol} x 7.4805)/Reagent Density =		gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24 hours/day)/Reagent Density =	900	gallons (storage needed to store a 14 day reagent supply
		800	rounded up to the nearest 100 gallons)

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^{n}/(1+i)^{n} - 1 =$	0.0720
	Where n = Equipment Life and i= Interest Rate	

Parameter	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$(0.47 \times NOx_{in} \times NSR \times Q_B)/NPHR =$	0.7	kW/hour
Water Usage:			
Water consumption (q _w) =	$(m_{sol}/Density of water) x ((C_{stored}/C_{inj}) - 1) =$	4	gallons/hour
Fuel Data:			
Additional Fuel required to evaporate water in injected reagent (ΔFuel) =	Hv x $m_{reagent}$ x $((1/C_{inj})-1) =$	0.04	MMBtu/hour
Ash Disposal:			
Additional ash produced due to increased fuel consumption (Δash) =	(Δfuel x %Ash x 1x10 ⁶)/HHV =	0.0	lb/hour

Not applicable - Ash disposal cost applies only to coal-fired boilers

^{**} Formula for NOx removed was overwritten to be consistent with methodology for LNB and PGR calculations.

Boiler 6,7 (EU-6,7) SNCR Cost Estimate

Total Capital Investment (TCI)

For Coal-Fired Boilers:

 $TCI = 1.3 x (SNCR_{cost} + APH_{cost} + BOP_{cost})$

For Fuel Oil and Natural Gas-Fired Boilers:

 $TCI = 1.3 x (SNCR_{cost} + BOP_{cost})$

Capital costs for the SNCR (SNCR _{cost}) =	\$529,153 in 2021 dollars
Air Pre-Heater Costs (APH _{cost})* =	\$0 in 2021 dollars
Balance of Plant Costs (BOP _{cost}) =	\$795,466 in 2021 dollars
Total Capital Investment (TCI) =	\$1,722,005 in 2021 dollars

#VALUE!

SNCR Capital Costs (SNCR_{cost})

For Coal-Fired Utility Boilers:

 $SNCR_{cost} = 220,000 \times (B_{MW} \times HRF)^{0.42} \times Coalf \times BTF \times ELEVF \times RF$

For Fuel Oil and Natural Gas-Fired Utility Boilers:

 $SNCR_{cost} = 147,000 \times (B_{MW} \times HRF)^{0.42} \times ELEVF \times RF$

For Coal-Fired Industrial Boilers:

 $SNCR_{cost} = 220,000 \times (0.1 \times Q_B \times HRF)^{0.42} \times Coalf \times BTF \times ELEVF \times RF$

For Fuel Oil and Natural Gas-Fired Industrial Boilers:

 $SNCR_{cost} = 147,000 \times ((Q_B/NPHR) \times HRF)^{0.42} \times ELEVF \times RF$

SNCR Capital Costs (SNCR $_{cost}$) = \$529,153 in 2021 dollars

Air Pre-Heater Costs (APH_{cost})*

For Coal-Fired Utility Boilers:

 $APH_{cost} = 69,000 \times (B_{MW} \times HRF \times CoalF)^{0.78} \times AHF \times RF$

For Coal-Fired Industrial Boilers:

 $APH_{cost} = 69,000 \times (0.1 \times Q_B \times HRF \times CoalF)^{0.78} \times AHF \times RF$

Air Pre-Heater Costs (APH_{cost}) = \$0 in 2021 dollars

#VALUE!

Balance of Plant Costs (BOP_{cost})

For Coal-Fired Utility Boilers:

 $BOP_{cost} = 320,000 \times (B_{MW})^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$

For Fuel Oil and Natural Gas-Fired Utility Boilers:

 $BOP_{cost} = 213,000 \text{ x } (B_{MW})^{0.33} \text{ x } (NO_{x}Removed/hr)^{0.12} \text{ x RF}$

For Coal-Fired Industrial Boilers:

 $BOP_{cost} = 320,000 \text{ x } (0.1 \text{ x } Q_B)^{0.33} \text{ x } (NO_x Removed/hr)^{0.12} \text{ x BTF x RF}$

For Fuel Oil and Natural Gas-Fired Industrial Boilers:

 $BOP_{cost} = 213,000 \times (Q_B/NPHR)^{0.33} \times (NO_xRemoved/hr)^{0.12} \times RF$

Balance of Plant Costs (BOP_{cost}) = \$795,466 in 2021 dollars

Boiler 6,7 (EU-6,7) SNCR Cost Estimate

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$28,576 in 2021 dollars
Indirect Annual Costs (IDAC) =	\$124,759 in 2021 dollars
Total annual costs (TAC) = DAC + IDAC	\$153,335 in 2021 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Water Cost) + (Annual Fuel Cost) + (Annual Ash Cost)

_		
Annual Maintenance Cost =	0.015 x TCI =	\$25,830 in 2021 dollars
Annual Reagent Cost =	$q_{sol} \times Cost_{reag} \times t_{op} =$	\$2,511 in 2021 dollars
Annual Electricity Cost =	P x Cost _{elect} x t _{op} =	\$66 in 2021 dollars
Annual Water Cost =	$q_{water} x Cost_{water} x t_{op} =$	\$21 in 2021 dollars
Additional Fuel Cost =	Δ Fuel x Cost _{fuel} x t _{op} =	\$147 in 2021 dollars
Additional Ash Cost =	Δ Ash x Cost _{ash} x t _{op} x (1/2000) =	\$0 in 2021 dollars
Direct Annual Cost =		\$28,576 in 2021 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x Annual Maintenance Cost =	\$775 in 2021 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$123,984 in 2021 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$124,759 in 2021 dollars

Cost Effectiveness

Total Annual Cost (TAC) =	\$153,335 per year in 2021 dollars
NOx Removed =	3 tons/year
Cost Effectiveness =	\$44,787 per ton of NOx removed in 2021 dollars

RACT PROJECT COSTS - BOILER NOS. 3 - 7 - AOC 2022 CPP RACT ANALYSIS

29 Jan22

	BOILER NO. 3		BOILER NO. 4		BOILER NOS. 4 - 7	
	LNB (\$)	LNB & FGR (\$)	LNB (\$)	LNB & FGR (\$)	LNB (\$)	LNB & FGR (\$)
EQUIPMENT						
1. BURNER	1,050,000	1,100,000	200,000	225,000	800,000	900,000
2. FGR FAN		150,000		25,000		100,000
SUBTOTAL	1,050,000	1,250,000	200,000	250,000	800,000	1,000,000
DIRECT INSTALLATION						
1. BURNER INSTALLATION	80,000	80,000	20,000	20,000	80,000	80,00
2. FRONT WALL MODIFICATIONS	60,000	60,000	30,000	30,000	120,000	120,00
3. GAS PIPING	20,000	20,000	10,000	10,000	40,000	40,000
4. OIL PIPING	20,000	20,000	10,000	10,000	40,000	40,00
5. BREACHING		100,000	stic ide am	50,000		200,00
6. CONTROL DAMPER		20,000		15,000		60,00
7. CONTROL WIRING	40,000	50,000	20,000	25,000	80,000	100,00
8. CONTROL/ BMS INCORPORATION	60,000	60,000	30,000	30,000	120,000	120,00
9. ELECTRICAL	20,000	50,000	10,000	25,000	40,000	100,00
SUBTOTAL	300,000	460,000	130,000	215,000	520,000	860,00
INDIRECT INSTALLATION COSTS						
1. ENGINEERING (10%)	135,000	171,000	33,000	46,500	132,000	186,00
2. CONSTRUCTION ADMIN (4%)	54,000	68,400	13,200	18,600	52,800	74,40
3. CONTRACTOR FEES (10%)	135,000	171,000	33,000	46,500	132,000	186,00
4. START-UP (2%)	27,000	34,200	6,600	9,300	26,400	37,20
5. CONTINGENCY (3%)	40,500	51,300	9,900	13,950	39,600	55,80
SUBTOTAL	391,500	495,900	95,700	134,850	382,800	539,40
AOC REQUIRED INDIRECT COSTS						
1. CONTINGENCY (20%)	348,300	441,180	85,140	119,970	340,560	479,8
2. CONSTRUCTION ADMIN (4%)	69,660	88,236	17,028	23,994	68,112	95,9
3. GOVERNMENT TEST AND Q/C (2.5%)	43,538	55,148	10,643	14,996	42,570	59,9
4. AOC CONSTRUCTION MANAGEMENT (20%)	348,300	441,180	85,140	119,970	340,560	479,8
5. AOC PM FEES (5%)	87,075	110,295	21,285	29,993	85,140	119,9
6. OTHER (5%)	87,075	110,295	21,285	29,993	85,140	119,9
SUBTOTAL	983,948	1,246,334	240,521	338,915	962,082	1,355,6
GRAND TOTAL	2,725,448	3,452,234	666,221	938,765	2,664,882	3,755,0

APPENDIX F. DETAILED COST CALCULATIONS – ACTUAL EMISSIONS

This appendix contains detailed cost effectiveness calculations based on actual emissions for:

- ▶ Installing LNBs with FGR on Boiler 3
- ▶ Installing LNBs with FGR on Boilers 4 through 7

Cost Analysis for Reducing NO $_{\rm X}$ Emissions by Installing Low NO $_{\rm X}$ Burners (LNB) and Flue Gas Recirculation (FGR)

Cost Item	Computational Method	Cost	Notes
Purchased Equipment Costs			
Burner FGR Fan Total Equipment Costs		\$1,100,000 \$150,000 \$1,250,000 (A)	Project Cost Estimate Provided by AEI dated January 2022.
Direct Installation Costs			
Burner Installation Front Wall Modifications Gas Piping Oil Piping Breaching Control Damper Control Wiring Control/BMS Incorporation Electrical Total		\$80,000 \$60,000 \$20,000 \$20,000 \$100,000 \$20,000 \$50,000 \$60,000 \$460,000 (B)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
Total Purchased Equipment and Direct	(A + B)	\$1,710,000 (C)	
Indirect Installation Costs			
Engineering Construction and Field Expenses Contractor Fees Start-up Contingencies Total	0.10 (C) 0.04 (C) 0.10 (C) 0.02 (C) 0.03 (C)	\$171,000 \$68,400 \$171,000 \$34,200 \$51,300 \$495,900 (D)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
AOC Required Indirect Installation Costs			
Contingency Construction Admin Government Test and QC AOC Construction Management AOC PM Fees Other Total	0.20 (C + D) 0.04 (C + D) 0.025 (C + D) 0.20 (C + D) 0.05 (C + D) 0.05 (C + D)	\$441,180 \$88,236 \$55,148 \$441,180 \$110,295 \$110,295 \$1,246,334 (E)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
Total Installed Capital Cost	(C + D + E)	\$3,452,234 (F)	
Direct Annual Costs		N/A	
Indirect Annual Costs			
Capital Recovery	CRF (F)	\$343,931 (G)	Reference EPA CCM 6th Edition, Section 1, Chapter 2, Equation 2.8a. CRF based on 15 years and 5.5% interest rate.
Total Annualized Cost	(G)	\$343,931	
Cost Effectiveness			
Baseline NO _X Emissions (tpy) Unit Heat Input Rate (MMBtu/yr) Controlled NO _X Emissions Rate (lb/MMBtu) Controlled NO _X Emissions (tpy)		13.3 245,380 0.05 6.1	Baseline Actual Emissions is average of 2020-2021 observed emissions. Average heat input to boiler during 2020-2021 baseline. RACT limit for natural gas (20 DCMR 805.5(e)(2)(B)) ¹
Control Operating Time (%) NO _x Emissions Removed (ton/yr) Cost (\$/ton NO _x removed)		100% 7.2 \$47,732	

 $^{^1}$ To provide a conservative NO $_X$ removal cost estimate, the emissions limit for natural gas firing was used to calculate "controlled" emissions. However, this unit burns both fuel oil and natural gas during normal operations. Emissions during fuel oil firing would be subject to a limit of 0.12, resulting in fewer tons of NO $_X$ removed by this emissions control option and a higher \$/ton cost.

Cost Item	Computational Method	Cost	Notes
Purchased Equipment Costs			
Burner FGR Fan Total Equipment Costs		\$225,000 \$25,000 \$250,000 (A)	Project Cost Estimate Provided by AEI dated January 2022.
Direct Installation Costs			
Burner Installation Front Wall Modifications Gas Piping Oil Piping Breaching Control Damper Control Wiring Control/BMS Incorporation Electrical Total		\$20,000 \$30,000 \$10,000 \$10,000 \$50,000 \$15,000 \$25,000 \$30,000 \$25,000 \$215,000 (B)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
Total Purchased Equipment and Direct	(A + B)	\$465,000 (C)	
Indirect Installation Costs			
Engineering Construction and Field Expenses Contractor Fees Start-up Contingencies Total	0.10 (C) 0.04 (C) 0.10 (C) 0.02 (C) 0.03 (C)	\$46,500 \$18,600 \$46,500 \$9,300 \$13,950 \$134,850 (D)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
AOC Required Indirect Installation Costs			
Contingency Construction Admin Government Test and QC AOC Construction Management AOC PM Fees Other Total	0.20 (C + D) 0.04 (C + D) 0.025 (C + D) 0.20 (C + D) 0.05 (C + D) 0.05 (C + D)	\$119,970 \$23,994 \$14,996 \$119,970 \$29,993 \$29,993 \$338,915 (E)	Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022. Project Cost Estimate Provided by AEI dated January 2022.
Total Installed Capital Cost	(C + D + E)	\$938,765 (F)	
Direct Annual Costs		N/A	
Indirect Annual Costs			
Capital Recovery	CRF (F)	\$93,525 (G)	Reference EPA CCM 6th Edition, Section 1, Chapter 2, Equation 2.8a. CRF based on 15 years and 5.5% interest rate.
Total Annualized Cost	(G)	\$93,525	

Cost Analysis for Reducing NO $_{\rm X}$ Emissions by Installing Low NO $_{\rm X}$ Burners (LNB) and Flue Gas Recirculation (FGR)

Cost Item	Computational Method	Cost	Notes
Cost Effectiveness - Boiler 4 Baseline NO _X Emissions (tpy) Unit Heat Input Rate (MMBtu/yr) Controlled NO _X Emissions Rate (lb/MMBtu) Controlled NO _X Emissions (tpy)		6.0 114,915 0.05 2.9	Baseline Actual Emissions is average of 2020-2021 observed emissions. Average total heat input during 2020-2021 baseline. RACT limit for natural gas (20 DCMR 805.5(e)(3)(C)) ¹
Control Operating Time (%) NO _X Emissions Removed (ton/yr) Cost (\$/ton NO _X removed) - Boiler 4		100% 3.1 \$30,133	
Cost Effectiveness - Boiler 5 Baseline NO _X Emissions (tpy) Unit Heat Input Rate (MMBtu/yr) Controlled NO _X Emissions Rate (lb/MMBtu) Controlled NO _X Emissions (tpy)		3.1 57,745 0.05 1.4	Baseline Actual Emissions is average of 2020-2021 observed emissions. Average total heat input during 2020-2021 baseline. RACT limit for natural gas (20 DCMR 805.5(e)(3)(C)) ¹
Control Operating Time (%) NO _x Emissions Removed (ton/yr) Cost (\$/ton NO _x removed) - Boiler 5		100% 1.6 \$57,683	
Cost Effectiveness - Boiler 6 Baseline NO _X Emissions (tpy) Unit Heat Input Rate (MMBtu/yr) Controlled NO _X Emissions Rate (lb/MMBtu) Controlled NO _X Emissions (tpy)		4.5 89,337 0.05 2.2	Baseline Actual Emissions is average of 2020-2021 observed emissions. Average total heat input during 2020-2021 baseline. RACT limit for natural gas (20 DCMR 805.5(e)(3)(C)) ¹
Control Operating Time (%) NO _x Emissions Removed (ton/yr) Cost (\$/ton NO _x removed) - Boiler 6		100% 2.3 \$40,768	
Cost Effectiveness - Boiler 7 Baseline NO _X Emissions (tpy) Unit Heat Input Rate (MMBtu/yr) Controlled NO _X Emissions Rate (lb/MMBtu) Controlled NO _X Emissions (tpy)		3.7 69,930 0.05 1.7	Baseline Actual Emissions is average of 2020-2021 observed emissions. Average total heat input during 2020-2021 baseline. RACT limit for natural gas (20 DCMR 805.5(e)(3)(C)) ¹
Control Operating Time (%) NO _X Emissions Removed (ton/yr) Cost (\$/ton NO _X removed) - Boiler 7		100% 1.9 \$48,561	

 $^{^1}$ To provide a conservative NO_X removal cost estimate, the emissions limit for natural gas firing was used to calculate "controlled" emissions. However, these units burn both fuel oil and natural gas during normal operations. Emissions during fuel oil firing would be subject to a limit of 0.09, resulting in fewer tons of NO_X removed by this emissions control option and a higher \$/ton cost.